1. Numpy是python开源的一个计算库
2.可用来存储和处理大型矩阵,比Python自身数据结构要高效。
3.NumPy将Python变成一种免费的强大的Matlab系统
一般有三种创建方式:
从python的基础数据对象转化
import numpy as np a = [1,2,3,4] x1 = np.array(a) x2 = np.array([a,a])
print(type(x1))>>>>>>>>>>>>
<class 'numpy.ndarray'>
通过Numpy内生的函数生成
import numpy as np c=np.arange(11) print(c)
从硬盘(文件)读取数据
import numpy as np x = np.loadtxt('000001.csv',delimiter=',',skiprows=1,usecols=(1,4,6),unpack= False) # print(x) # print(x.shape) open,close,volume = np.loadtxt('000001.csv',delimiter=',',skiprows=1,usecols=(1,4,6),unpack= True) print(open) print("__________________________________") print(close) print("__________________________________") print(volume) print("__________________________________")
常用函数
min, max, median, mean, variance
np.func(x)
x.func()
sort
x.sort()
np.sort(x)
作业:
使用numpy生成100以内随机数组。
import numpy as np x = np.random.randint(1,100,10) print(x)
将数组存储到文件,再从该文件中读取数组。
import numpy as np x = np.random.randint(1,100,10) print(x) np.savetxt('02hw.txt',x) c= np.loadtxt("02hw.txt") print(c)
对数组进行排序,求最大值、最小值、均值、方差。
import numpy as np x = np.random.randint(1,10,4) print(x) x_sort=np.sort(x) print(x_sort) x_min = np.min(x) x_max = np.max(x) x_mean = np.mean(x) x_variance = np.var(x) print(x_min,x_max,x_mean,x_variance)