计算边际误差即计算 SVM 中两个间隔之间的距离。
三条线方程如下:
Wx+b=1
Wx+b=0
Wx+b=-1
由于这三条线为等距平行线,要想确定第一条线和第三条线之间的距离,我们只需要计算前两条线之间的距离,接着将这个数字乘以二。这也就是说我们需要确定图 1 中前两条线之间的距离。
图1
请注意,由于我们只需计算线条之间的距离,因此也可以将线条平移,直到其中一条线与原点相交(图 2)。这时得到的方程如下:
Wx=0
Wx=1
图 2
现在,第一条线的方程为 Wx=0,这意味着它与标记为红色的向量(图 3) W = (w1, w2)垂直。
图 3
该向量与方程为 Wx=1 的线条相交于蓝点(图 4)。假设该点的坐标为 (p,q)。那么我们可以得到下面两个结果:
w1p + w2q = 1(由于该点位于这条线上),并且
由于该点位于向量 W = (w1, w2)上,(p,q) 是 (w1, w2) 的倍数。
我们可以这样求解这个方程:对于某个 k 值而言,有 (p,q) = k(w1, w2)。那么我们的第一个方程将被转换为 k(w12 + w22) = 1。因此,k = 1/(w12+w22)=1/(|W|2)。这也就是说,蓝点表示向量W/(|W|2),如图 4 所示。
图 4
现在,两条线之间的距离是蓝色向量的范数。由于分母是一个标量,向量W/(|W|2)的范数正是|W|/(|W|2),与 1/|W|(图 5)相同。
图 5
最后,最终距离是这连续两条平行线(图 6)之间的距离之和。由于每两条线之间的距离为 1/|W| ,那么总距离为 2/|W| 。
图 6