文章目录
1. 完整的推导一遍SVM
SVM是一种二分类模型,基本想法就是基于训练集和样本空间中找到一个最优的划分超平面,将两类样本分割开来,首先要知道什么样的划分法才能称为“最”优划分。最优划分是指两类的样本点到分类超平面的距离都最远。
在样本空间中,划分超平面可用 w T x + b = 0 w^Tx + b=0 wTx+b=0,记为 ( w , b ) (w,b) (w,b),样本点 ( x i , y i ) (x_i,y_i) (xi,yi)到划分超平面的函数间隔为: γ ′ = y ( w T x + b ) \gamma^{'} = y(w^Tx + b) γ′=y(wTx+b),几何间隔为: γ = y ( w T x + b ) ∣ ∣ w ∣ ∣ = γ ′ ∣ ∣ w ∣ ∣ \gamma = \frac{y(w^Tx + b)}{||w||} = \frac{\gamma^{'}}{||w||} γ=∣∣w∣∣y(