SVM算法问题汇总

本文详细介绍了SVM算法,包括完整的推导过程,硬间隔和软间隔的概念,以及SVM为何引入拉格朗日优化方法。此外,还讨论了SVM的核函数选择及其在不同情况下的应用,并对比了SVM与逻辑回归的联系和区别。
摘要由CSDN通过智能技术生成

1. 完整的推导一遍SVM

        SVM是一种二分类模型,基本想法就是基于训练集和样本空间中找到一个最优的划分超平面,将两类样本分割开来,首先要知道什么样的划分法才能称为“最”优划分。最优划分是指两类的样本点到分类超平面的距离都最远。

        在样本空间中,划分超平面可用 w T x + b = 0 w^Tx + b=0 wTx+b=0,记为 ( w , b ) (w,b) w,b,样本点 ( x i , y i ) (x_i,y_i) xi,yi到划分超平面的函数间隔为: γ ′ = y ( w T x + b ) \gamma^{'} = y(w^Tx + b) γ=y(wTx+b),几何间隔为: γ = y ( w T x + b ) ∣ ∣ w ∣ ∣ = γ ′ ∣ ∣ w ∣ ∣ \gamma = \frac{y(w^Tx + b)}{||w||} = \frac{\gamma^{'}}{||w||} γ=wy(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值