卫星图像目标检测

1.You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery


论文时间:2018.5
论文地址:https://arxiv.org/pdf/1805.09512.pdf
网络结构:
基于YOLOv2的改进网络结构,为了解决目标较小问题,输出特征图从13变成26,输入图像尺寸416
测试过程:
采用滑动窗口法选择416大小的区域,相邻区域之间重叠15%避免物体在边界被分割的情况.如下图
1201067-20180828194149851-961843707.png
算法性能:
大于5个像素的目标可以被有效的检测,图像质量 30cm GSD,从论文效果来看,即使检测车辆,也比较有效.车辆长宽一般为3-4米,也就是10个像素左右
1201067-20180828194646658-1447413338.png
不同分辨率下的效果
左边是15cm每像素,右边是90cm每像素,F1 score分别为0.94和0.84,下降幅度可以接受
1201067-20180828200306734-1105799368.png

2.Contextual Region-Based Convolutional Neural Network with Multilayer Fusion for SAR Ship Detection


论文时间:2017
算法简介:基于vgg16网络的两阶段检测器(faster-rcnn类似,需要先提取候选区域,再利用roi-pooling提取区域内特征的算法).为了检测小目标,融合了浅层特征.
测试: 滑动窗口截取512大小区域,和第一篇方法类似
数据
10m每像素,作者统计的舰船大小,大部分舰船像素占20-80像素,这里的像素指面积
1201067-20180828203102509-1346072425.png
效果
1201067-20180828203415940-1714168772.png

转载于:https://www.cnblogs.com/xiongzihua/p/9550399.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值