数据仓库自动迁移系统的设计和在Azure上实现的关键Python代码

1. 需求

需要设计一个应用程序将Apache Hive、Teradata和IBM Netezza数据仓库的表结构及数据、视图、存储过程、用户自定义函数、Schema、用户与角色的权限等对象,自动转换并迁移到目标数据仓库系统, 比如Snowflake、Redshift和Azure Synapse Dedicated SQL pool,然后对转换以后的对象进行读取,比如对象名称类型,对象参数信息,数据的行数与最大最小值等数据显示在前端界面中。前端使用Azure PowerApps,后端使用Azure Databricks编写Job并调用Notebook存储SQL转换和数据转移的PySpark代码,数据从源数据库复制出来,临时存储在Azure Data Lake Storage中,按需复制到目标数据仓库中。前端通过Restful API调用后端的Databricks job,并传递参数,后端将数据存储到Azure SQL database数据提供前端读取,SQL对象转换使用正则表达式匹配语句提取内容转换成目标数据仓库的SQL对象和OpenAI GPT 4o1 API转换两种方案。SQL对象转换之后,在利用OpenAI GPT 4o1 API优化SQL语句的性能,转换前后的SQL对象转换的定义都存储在Azure SQL database中。用户第1次登录时,PowerApps会获取他的Windows登录账号,并存储在SQL数据库的用户表中,并记录最近的登录日期时间,其它所有的表都有该表用户ID字段,以便分开不同用户的数据。该程序采用向导式界面样式,一步一步引导用户进行数据和SQL对象的迁移操作,请给出该数据仓库自动迁移系统的系统设计、界面设计、后台数据库表结构设计和测试用例。

2.设计

系统设计

  1. 架构分层
  • 前端层:使用Azure PowerApps构建向导式界面,负责与用户交互,接收迁移任务参数,展示迁移进度、对象详情等信息,并通过Restful API与后端通信。
  • 后端层:基于Azure Databrick,编写Job调用Notebook执行数据转换与迁移逻辑。Notebook里用PySpark代码处理数据复制、临时存储以及向目标仓库导入数据。
  • 存储层:利用Azure Data Lake Storage作为源数据的临时存储,Azure SQL database存储用户信息、SQL对象转换定义,以及为前端提供数据读取服务。
  1. 数据迁移流程
  • 提取:从Apache Hive、Teradata和IBM Netezza中读取表结构、数据、视图等各类对象,借助SQL查询结合对应数据库驱动完成。
  • 转换:使用正则表达式匹配和OpenAI GPT 4o1 API两种方式,将源SQL对象转为目标数据仓库(Snowflake、Redshift等)可用的形式,再用GPT优化性能。
  • 加载:先把数据暂存到Azure Data Lake Storage,再按需传输至目标数据仓库 。
  1. 权限管理:用户首次登录Azure PowerApps时,获取Windows登录账号存入Azure SQL数据库用户表,同时记录登录时间。其他业务表关联用户ID,实现数据隔离。

界面设计

  1. 登录页面:显示Windows登录按钮,登录成功后跳转到主向导页面,记录用户登录信息到数据库。
  2. 向导首页:列出可迁移的源数据仓库和目标数据仓库选项,用户选择源与目标系统后进入下一步。
  3. 对象选择页:勾选需要迁移的表、视图、存储过程等对象,还可选择全选/全不选。
  4. 迁移设置页:配置迁移参数,如临时存储路径、是否立即执行等。
  5. 迁移进度页:用进度条展示迁移的实时进度,迁移完成后提供查看报告链接。
  6. 数据查看页:展示迁移后对象名称、类型、参数,以及数据行数、最值等统计信息 。

后台数据库表结构设计

  1. 用户表: User(ID, WindowsLoginAccount, LastLoginDateTime) ,用于存储用户登录信息。
  2. 迁移任务表: MigrationTask(ID, UserID, SourceWarehouse, TargetWarehouse, Status, StartTime, EndTime) ,记录迁移任务的基本情况。
  3. 迁移对象表: MigrationObject(ID, MigrationTaskID, ObjectName, ObjectType, SourceDefinition, TargetDefinition) ,保存迁移对象的转换前后定义。
  4. 数据统计信息表: DataStatistics(ID, MigrationObjectID, RowCount, MinValue, MaxValue) ,存储迁移后数据的统计值。

测试用例

  1. 功能性测试
  • 测试从不同源数据仓库(如Apache Hive)到目标仓库(如Snowflake)迁移单个表结构与数据,验证数据完整性和对象转换准确性。
  • 检查权限管理,不同用户登录后创建的迁移任务是否相互隔离。
  1. 性能测试
  • 模拟大规模数据迁移,记录迁移时间,检查临时存储和目标仓库写入性能,优化SQL转换性能前后对比。
  1. 接口测试
  • 验证前端PowerApps通过Restful API调用后端Databrick Job时,参数传递是否正确,数据返回是否符合预期。
  1. 兼容性测试
  • 测试不同版本的源数据仓库、目标数据仓库与系统各组件的兼容性,确保没有版本冲突导致的迁移失败。

3. 系统具体实现

  1. 前端(Azure PowerApps):
  • 使用 PowerApps 的内置功能创建各个页面。例如,登录页面利用 Office365SignIn 控件实现 Windows 登录,登录成功后调用 REST API 向后端发送登录信息存储请求。
  • 在向导首页,通过下拉框动态加载可迁移的源数据仓库和目标数据仓库选项,选项数据可从后端预先获取。
  • 对象选择页利用复选框组来勾选各类对象,设置全选/全不选按钮的 OnSelect 事件来批量操作。
  • 迁移设置页添加文本输入框供用户填写临时存储路径,开关按钮控制是否立即执行。
  • 迁移进度页使用进度条控件,定期调用后端 API 获取迁移进度并更新。数据查看页从后端获取数据,以表格形式展示对象详情与统计信息。
  1. 后端(Azure Databrick):
  • Job 与 Notebook 创建:
  • 在 Databrick 中创建 Job,配置参数传入机制。Job 调用的 Notebook 里,首先导入必要的 PySpark 库,如 pyspark.sql 。
  • 利用对应数据库连接器(如 Hive JDBC 连接器、Teradata 连接器等)从源数据仓库读取对象:
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("DataMigration").getOrCreate()

从 Hive 读取表,示例

hive_df = spark.read
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值