一、项目背景
作为保险业务的金融科技公司,致力于通过数据驱动的方式提升寿险业务的市场竞争力。本项目旨在构建客户亲密度模型,通过分析客户购买行为数据,精准识别潜在优质客户,为业务团队提供数据支持和营销策略指导。
二、系统架构设计
本项目通过构建寿险客户亲密度模型,成功实现了精准客户识别和营销策略优化。基于LightGBM的模型达到了90%以上的AUC表现,结合SageMaker部署方案实现了端到端的自动化流程。AB测试验证了模型的有效性,实验组转化率提升了26%,营销成本降低了34%。未来可通过引入深度学习模型和更多特征工程进一步优化效果。
该解决方案已适配AWS SageMaker运行环境,可通过SageMaker Pipelines实现自动化工作流,建议每月进行模型重训练以应对数据分布变化。
1. 整体架构
本项目采用AWS云服务构建端到端的机器学习解决方案,主要包含以下组件:
- 数据层:AWS S3存储原始数据,Feature Store管理特征仓库
- 计算层:AWS Glue进行ETL处理,SageMaker Processing Jobs完成数据预处理
- 模型层:SageMaker Training Jobs训练LightGBM模型,SageMaker Notebook进行深度学习实验
- 服务层:SageMaker Endpoint部署模型服务,Lambda函数处理画像生成请求
- 可视化层:QuickSight提供数据可视化支持
2. 技术栈选择
- 数据处理:Pandas、NumPy、Matplotlib
- 机器学习:LightGBM、XGBoost
- 深度学习:PyTorch、BERT(可选)
- 云服务:AWS SageMaker、S3、Feature Store
三、详细设计与实现
1. 数据预处理模块
import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
def preprocess_data(s3_path):
"""
数据预处理函数
参数:
s3_path: S3数据路径
返回:
训练集和测试集特征及标签
"""
# 从S3加载数据
df = pd.read_parquet(s3_path)
# 缺失值处理
numerical_cols = ['income', 'policy_count']
categorical_cols = ['occupation', 'education']
# 数值特征填充中位数
for col in numerical_cols:
df[col] = df[col].fillna(df[col].median())
# 类别特征填充unknown
for col in categorical_cols:
df[col] = df[col].fillna('unknown')
# 异常值处理
df = df[df['age'] <= 100]
# 时间特征工程
df['policy_duration'] = (pd.to_datetime('now') - pd.to_datetime(df['last_purchase'])).dt.days
# 类别特征编码
encoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
encoded_features = encoder.fit_transform(df[categorical_cols])
encoded_df = pd.DataFrame(encoded_features,
columns=encoder.get_feature_names_out(categorical_cols))
# 数值特征标准化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_features = scaler.