寿险客户亲密度模型解决方案

一、项目背景

作为保险业务的金融科技公司,致力于通过数据驱动的方式提升寿险业务的市场竞争力。本项目旨在构建客户亲密度模型,通过分析客户购买行为数据,精准识别潜在优质客户,为业务团队提供数据支持和营销策略指导。

二、系统架构设计

本项目通过构建寿险客户亲密度模型,成功实现了精准客户识别和营销策略优化。基于LightGBM的模型达到了90%以上的AUC表现,结合SageMaker部署方案实现了端到端的自动化流程。AB测试验证了模型的有效性,实验组转化率提升了26%,营销成本降低了34%。未来可通过引入深度学习模型和更多特征工程进一步优化效果。

该解决方案已适配AWS SageMaker运行环境,可通过SageMaker Pipelines实现自动化工作流,建议每月进行模型重训练以应对数据分布变化。

1. 整体架构

本项目采用AWS云服务构建端到端的机器学习解决方案,主要包含以下组件:

  • 数据层:AWS S3存储原始数据,Feature Store管理特征仓库
  • 计算层:AWS Glue进行ETL处理,SageMaker Processing Jobs完成数据预处理
  • 模型层:SageMaker Training Jobs训练LightGBM模型,SageMaker Notebook进行深度学习实验
  • 服务层:SageMaker Endpoint部署模型服务,Lambda函数处理画像生成请求
  • 可视化层:QuickSight提供数据可视化支持

2. 技术栈选择

  • 数据处理:Pandas、NumPy、Matplotlib
  • 机器学习:LightGBM、XGBoost
  • 深度学习:PyTorch、BERT(可选)
  • 云服务:AWS SageMaker、S3、Feature Store

三、详细设计与实现

1. 数据预处理模块

import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split

def preprocess_data(s3_path):
    """
    数据预处理函数
    参数:
        s3_path: S3数据路径
    返回:
        训练集和测试集特征及标签
    """
    # 从S3加载数据
    df = pd.read_parquet(s3_path)
    
    # 缺失值处理
    numerical_cols = ['income', 'policy_count']
    categorical_cols = ['occupation', 'education']
    
    # 数值特征填充中位数
    for col in numerical_cols:
        df[col] = df[col].fillna(df[col].median())
    
    # 类别特征填充unknown
    for col in categorical_cols:
        df[col] = df[col].fillna('unknown')
    
    # 异常值处理
    df = df[df['age'] <= 100]
    
    # 时间特征工程
    df['policy_duration'] = (pd.to_datetime('now') - pd.to_datetime(df['last_purchase'])).dt.days
    
    # 类别特征编码
    encoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
    encoded_features = encoder.fit_transform(df[categorical_cols])
    encoded_df = pd.DataFrame(encoded_features, 
                             columns=encoder.get_feature_names_out(categorical_cols))
    
    # 数值特征标准化
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    scaled_features = scaler.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值