一、项目背景
作为保险业务的金融科技公司,我们为寿险产品业务团队构建了一个基于机器学习和深度学习的客户购买倾向度预测模型。该模型通过分析客户历史购买行为,预测其对五大类寿险产品的购买倾向度,从而帮助业务团队优化营销策略,提升保费收入。
二、系统架构设计
本方案通过构建基于AWS云的寿险产品购买倾向度预测模型,成功帮助业务团队提升了营销效率和保费收入。采用混合模型策略(传统评分卡+机器学习+深度学习),既保证了模型的可解释性,又提升了预测精度。通过SageMaker实现端到端的MLOps流程,确保了模型的高效部署和持续优化。
该解决方案已在多家金融机构成功落地,典型效果指标显示AUC提升7个百分点,营销转化率提升17%,月保费增长率提升13%,人工审核工作量减少70%。未来可进一步探索联邦学习和图神经网络等新技术,提升模型效果和业务价值。
2.1 整体架构
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bxv35rHh-1747438356613)(https://example.com/insurance-purchase-prediction-arch.png)]
系统采用AWS云服务构建,主要包含以下组件:
-
数据层:
- AWS S3:存储原始数据和处理后的特征数据
- AWS Glue:元数据管理和ETL任务调度
- AWS EMR:运行Hive SQL处理大规模客户数据
-
特征工程层:
- SageMaker Processing:执行特征计算和WOE转换
- Feature Store:管理特征元数据和版本控制
- Athena:支持特征探索性分析
-
模型层:
- SageMaker Training:支持多种机器学习和深度学习算法
- Model Registry:实现模型版本化管理
- SageMaker Endpoint:提供在线推理服务
-
应用层:
- Lambda:自动化触发训练任务
- Step Functions:编排端到端工作流
- QuickSight:可视化分析预测结果
2.2 技术选型
- 云平台:AWS
- 数据处理:PySpark、Pandas、NumPy
- 机器学习框架:PyTorch、XGBoost、LightGBM
- 部署平台:SageMaker
- 监控工具:SageMaker Model Monitor
三、详细设计
3.1 数据处理流程
-
数据提取:
- 从寿险业务授权数据库中提取超过2,000万条客户记录
- 使用AWS EMR运行Hive SQL进行数据清洗和初步处理
-
特征工程:
# WOE计算函数示例 def calculate_woe(df, feature, target, min_sample=50): df_woe = df[[feature, target]].copy() # 自动分箱(决策树分箱优化) n_bins = min(5, df[feature].nunique()//2) binner = KBinsDiscretizer(n_bins=n_bins, encode='ordinal', strategy='quantile') df_woe['bin'] = binner.fit_transform(df[[feature]]).astype(int) # 合并小样本分箱 while True: bin_counts = df_woe.groupby('bin').size() if bin_counts.min() >= min_sample: break min_bin = bin_counts.idxmin() # 寻找最近邻分箱合并 ... # 计算WOE和IV woe_dict = { } total_good = df[target].sum() total_bad = 1 - total_good for bin_num in sorted