【笔记】【线性代数的本质】6-逆矩阵、列空间、零向量

笔记目录


线性方程组与矩阵

线性方程组列对齐后可以写成矩阵乘法的形式
006tKfTcgy1fkozeolkfdj31040gon36.jpg
求解$A\cdot x=v $时, 即要求取向量x 经矩阵A变换后与向量v重合。
006tKfTcgy1fkozlezunjj30us0i277m.jpg

可以分为以下两种情况讨论

\(det(A)!=0\)

如果A的行列式不为0,则可以对向量v进行逆变换求解x
即对v左乘一个能抵消A变换作用相反的矩阵
由此引出概念逆矩阵,记作\(A^{-1}\)
\(A^{-1}\cdot A=E\)
\(x=A^{-1}\cdot v\)

\(det(A)=0\)

如果A的行列式为0,则空间被压缩了,此时只有在此种情况才有解:v恰好落在压缩后的空间内。

秩(rank)可以描述空间被压缩的情况
例如,对一个3*3的变换矩阵来说,如果空间被压缩成了一个平面,可以称矩阵的秩为2;如果是直线则为1;特殊的,如果没有被压缩,秩为3,称为满秩。

列空间

矩阵的秩等于由矩阵的列向量张成的空间(span)的维数。因此列向量是否线性相关也可以反应空间是否被压缩,行列式是否为0。

零空间

如果v是零向量,则对任意A矩阵,都存在x的解——零向量。

转载于:https://www.cnblogs.com/messier/p/7757821.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值