由向量张成VS用条件约束
构造子空间的方法主要有两种:
1,一种是给出一组向量,由他们来张成子空间。
例如,矩阵的列空间和行空间就是通过这种方法来构造的,他们分别是由矩阵的各列和各行张成的。
2,一种是给出子空间所应受到的约束,满足这些约束条件的向量构成了该子空间。
比如说,矩阵的零空间,就是由满足齐次方程组Ax=0的所有解构成的,方程组Ax=0中的每一个方程都是一个约束条件。
对于第一种方法而言,可以有多余的向量,即,线性相关的向量。对于第二种方法而言也可以有多余的约束条件。
"下面我们逐一讨论四个基本子空间,并讨论基底的求法。我们指出,这四个基
                      
                      
                        
                            
                            
                          
                          
                            
本文深入解析线性代数中的子空间构造,包括向量张成与条件约束两种方法。重点讨论矩阵的行空间、零空间、列空间和左零空间,阐述它们的构造过程、维数计算以及与原矩阵的关系。同时,介绍了如何通过高斯消元法确定子空间基底,并通过实例进一步解释了各子空间的几何意义和性质。
          
                  
                订阅专栏 解锁全文
                
            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
                    
              
            
                  
					6119
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
					
					
					


            