线性代数 --- 线性代数基本定理上(四个基本子空间的维数,行秩=列秩)

本文深入解析线性代数中的子空间构造,包括向量张成与条件约束两种方法。重点讨论矩阵的行空间、零空间、列空间和左零空间,阐述它们的构造过程、维数计算以及与原矩阵的关系。同时,介绍了如何通过高斯消元法确定子空间基底,并通过实例进一步解释了各子空间的几何意义和性质。

由向量张成VS用条件约束

构造子空间的方法主要有两种:

1,一种是给出一组向量,由他们来张成子空间。

        例如,矩阵的列空间和行空间就是通过这种方法来构造的,他们分别是由矩阵的各列和各行张成的。

2,一种是给出子空间所应受到的约束,满足这些约束条件的向量构成了该子空间。

        比如说,矩阵的零空间,就是由满足齐次方程组Ax=0的所有解构成的,方程组Ax=0中的每一个方程都是一个约束条件。

        对于第一种方法而言,可以有多余的向量,即,线性相关的向量。对于第二种方法而言也可以有多余的约束条件。

        "下面我们逐一讨论四个基本子空间,并讨论基底的求法。我们指出,这四个基

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值