线性代数的本质--笔记整理

本文介绍了线性代数的基本概念,包括向量、线性组合、张成的空间与基、矩阵与线性变换、行列式、逆矩阵以及特征向量与特征值。强调了线性变换的几何直观和数学运算背后的几何意义,指出线性代数的本质在于对空间的操纵和描述。文章适合初学者理解线性代数的核心思想。
摘要由CSDN通过智能技术生成

线性代数的本质--笔记

00 序言

尽管一批教授和教科书编者用关于矩阵的荒唐至极的计算内容掩盖了线性代数的简明性,但是鲜有与之相较更为初等的理论。            一一让.迪厄多内

 

线性代数不仅仅是数值的运算,还需要了解潜在的几何直观。(从数值水平和几何水平理解)

------------------------------------------------------------------------------------------

01 向量是什么?

“The introduction of numbers as coordinates is an act of violence.

(参照一维连续统的特定划分模式来)                           一一 Hermann Weyl

引入一些数作为坐标是一种鲁莽的行为。      一一赫尔曼.外尔

向量:    

(1)物理:空间中的箭头,由长度与方向决定,可自由移动

(2)计算机:有序的数字列表 [0.1 0.5 0.7]T => 三维向量

(3)数学:Vector can be everything,只需保证两向量相加以及数字与向量相乘是有意义的

线性代数围绕两种基本运算:向量数乘与向量加法。

N维向量对应N维空间中的一个箭头,也对应一个有序N元数组。

向量也可视为空间中的一次运动。

Scalars 标量用于Scaling(缩放)向量(线代中数字主要作用为缩放向量,“数字”=“标量”)

线性代数提供了一种通过计算机能处理的数字来描述并操纵空间 的语言。

------------------------------------------------------------------------------------------

02 线性组合、张成的空间与基

数学需要的不是天赋,而是少量的自由想象,但想象太过自由又会陷入疯狂。

一一安古斯.罗杰斯

二维空间中,向量是x方向单位向量(i帽)和y方向单位向量(j帽)的缩放求和

i帽和j帽是xy坐标系的基向量(basis vectors)(选择不同的基向量可获得新的合理坐标系)

 

两个数乘向量的和称为这两个向量的线性组合

所有可表示为给定向量线性组合的向量集合称为 给定向量“张成的空间”(span)

两个非共线向量可张成二维空间,张成也指通过向量加与乘可获得的向量集合

 

向量组线性有关:向量组有向量去掉后不影响张成的空间(向量可表示为其它向量线性组合)

线性无关:所有向量都给张成的空间增添新的维度

基的严格定义:向量空间的一组基是张成改扩建的一个线性无关向量集

------------------------------------------------------------------------------------------

03 矩阵与线性变换

Unfortunately,no one can be told what the Matrix is. You have to see it for yourself.

一一Morpheus

线性变换: 变换transformation ≈ 函数function    向量变换->运动

         线性变换是“保持网格线平行且等距分布的变换”(保持原点不懂)

2X2 Matrix: 列向量可理解为变换后的i帽和j帽(矩阵列看为变化后的基向量)

描述线性变化的二维矩阵与任意初始向量  à 线性变化后的向量

 

矩阵向量乘法可看作变化后基向量的线性组合

Shear剪切: i帽不变,j帽变为(1,1)

以基向量坐标为列构成的矩阵提供了描述线性变换的语言。

矩阵是对空间的一种特定变换。

线性的严格定义:

------------------------------------------------------------------------------------------

04 矩阵乘法与线性变换复合

It is my experience that proofs involving matrices can be shortened by 50% if one throws the matrices out.                                一一 Emil Artin

严格意义上:线性变换是将向量作为输入与输出的一类函数

         线性变换可看作对空间的挤压伸展(保持网格线平行且等距分布,保持原点不变)

多个线性变换的总体作用是另一个线性变换,通常称为前面多个独立变换的“复合变换

 

对给定向量旋转后剪且应当与复合变换作用结果完全相同

 

因此:复合变换矩阵应当等于前面独立变换矩阵的乘积(矩阵相乘==线性变换的相继作用)

 

i帽去哪了?

右侧矩阵的列向量为第一次变换后的基向量(二维空间为i帽和j帽),左乘矩阵后得到矩阵的列向量为第二次变换后的基向量。

Associativity结合律:(A)BC = A (BC) ----证明—> 变换相继作用是对此性质的良好解释

(数值证明繁琐)    Good explanation > Symbolic proof

 

附注一:三维空间中的线性变换(三维向量输入输出)

三维空间中的基向量:i帽,j帽和k帽;线性变换后基向量坐标组成3X3矩阵

基向量“缩放再相加”的过程在不同维度的变换前后均适用。

三维矩阵相乘:线性变换依次作用(右至左),应用广泛(计算机图形学等)

------------------------------------------------------------------------------------------

05 行列式(determinant)

计算的目的不在于数字本身,而在于洞察其背后的意义。 一一理查德.哈明

 

行列式:衡量变换对空间拉伸或挤压的程度  --->  测量给定区域面积增大或缩小的比例

只需知道单位正方形(基向量构成)面积变化比例可得其它任意区域的面积变化比例(由网格线平行且等距分布得到)

 

线性变换的行列式(The determinant of a transformation): det(A)

矩阵A: det(A) = n 表示线性变换将一个区域的面积变为原来的n倍

当n为0时说明线性变换将平面压缩到一条线或一个点上,因此行列式是否为0可表示矩阵代表的变换是否将空间压缩到更小维度

当n < 0时,(缩放负数倍?)涉及定向概念,类似于翻转空间,变换改变空间定向;或者根据i帽与j帽考虑,j帽的位置由i帽的左边变为i帽的右边时,判定空间定向改变。空间定向改变时行列式为负,但行列式绝对值表示区域空间缩放比例。

负的面积缩放比例为什么与定向改变相关?

二维空间中,i帽与j帽的靠近、重合(行列式为0)到远离,行列式呈持续减小的趋势;

 

三维空间中,考虑立方体(1X1X1,棱位于基向量上),变化后成为平行六面体(parallelepiped),行列式给出缩放比例,可视为六面体的体积。det=0时,矩阵的列必然线性相关。

描述三维空间定向:右手定则(变换后可以用右手表示则定向没改变,行列式为正;只能用左手做表示定向改变,行列式为负)

 

行列式计算:

2X2矩阵行列式: def( [a,b],[c,d]) = ad-bc。三阶行列式也成立

 

证明矩阵乘积的行列式等于行列式的乘积det(M1M2) = det(M1 )det(M2)

我认为:行列式计算空间缩放率,变换对空间的缩放程度是固定的。

行列式反应线性变换对空间(基向量)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值