什么叫增量raise_自然底数e究竟是一个什么样的数?

如果让你说出印象最深刻的一个数学常数,我相信大部分人都会说7175833dfd414db0569ab83acb1f06ab.png,因为这个常数在我们的数学课上几乎无处不在,它就像个幽灵一样一直伴随着我们的整个学生时代。虽然是7175833dfd414db0569ab83acb1f06ab.png一个无理数(无限不循环小数:3.1415926∙∙∙),但是它的含义却是非常直观的,就是圆的周长与直径的比值,这个比值叫圆周率,它不随着圆的大小而发生变化,人们很容易理解这样一个常数。但是还有另外一个常数e,它叫自然底数,我们高中的时候就开始接触它,你还有印象吗?我估计不少人都把它还给老师了,因为这个e既不像7175833dfd414db0569ab83acb1f06ab.png那样直观,又没有一个明确具体的定义,非常神秘莫测。 来看看我们当时的教材是怎么定义的: 如果7a31fb5ee2364d748b09f004153f17f3.png(a>0且a≠1),那么x就叫做以a为底、N的对数,记作5aba5b104db4943d0aa6ee0c5d1ea73c.png。 后面再紧跟一句话:“在科学技术中常使用以无理数e=2.71828∙∙∙为底数的对数,以e为底的对数称为自然对数。” 这个不像定义的定义简直就像一个从天而降的UFO,砸得年少的我们晕头转向找不着北。 等到了大学,终于在高数(我们数学专业的叫数分)课上看到了e的庐山真面目,但是画风却是这样的: 76dbd5daab579541bc2bca97cf5545e2.png 这是一个极限形式的定义,但给人的感觉就更加莫名其妙了,数学中有那么多极限,凭什么要取这个极限为e,这跟从天而降的UFO有什么区别。 网上有很多科普文章用“复利”计息周期的极限来解释e的现实意义。但是,从数学史的角度来看,事实并非如此,复利计息周期的极限是在人们发现了e之后才认识到的,而不是通过复利才发现了e,情况刚好是反过来。 那么这个极限和e究竟是怎么来的?有什么现实意义?我们还是从e的前世今生说起。 【1  e的来历】 从上面给出的对数的定义,我们知道对数其实是指数的逆运算,可是,人们最早认识到对数的时候,还没有完全认识指数,当时人们还不理解非整数幂的指数,也就是说,在历史上对数的发现是早于指数的,这跟我们现在先指数后对数的学习顺序刚好是反过来的(这种例子在数学上比比皆是)。 今天我们计算一些复杂数字的时候是很容易的,智能手机中的计算器app、一些办公室常用的计算器等,都可以非常方便的计算加减乘除和开方、乘方的结果。 8920abe1f69a8c6b6a06452e961914b5.png 手机APP计算器 可是,如果我们把时钟回拨到500年前,那时的人们要想计算一些复杂数字是很困难的,尤其在处理天文数据的时候,需要多次计算大数字的乘法、加法,计算量非常大。例如计算128×1024这样的乘法,如果只算一次还可以,如果有成百上千次的类似手工计算,显然是让人崩溃的。 1544年德国数学家斯蒂费尔在他的“整数的算术”一书中欣喜地写道:他发现了整数的“奇妙性质”,这些性质可以写成整本整本的书。他在书中举了两个数列: 24835567090cb2d6277e51d6ce617ba3.png 上面一行是一个通项公式为6846b681ef7ec299856fb2bfee71e6d2.png(n为整数)的等比数列,斯蒂费尔称之为“原数”。下一行是一个整数构成的等差数列,斯蒂费尔称之为与原数对应的“代言人”。斯蒂费尔发现,如果要计算16×128的话,可以用下面的巧妙方法: 先找到16的代言人4,再找到128的代言人7,然后把4和7相加,就得到了16×128的新代言人11,最后找到11对应的新数2048,这个2048就是16×128的答案。 如果把斯蒂费尔的方法用今天的数学语言来表示,其实就是这样一个对应关系: 184922d201951975f86db0abd0c7fc6b.png 这里的“lb”是“log2”的规范简写。这真是美妙极了,计算乘法变成了计算比乘法更简单的加法!对此,当然我们很容易理解,因为b988a86dcc2886b7199647a430ca2bd7.png,上表实际上是底数为2的最原始的对数表。美妙的感觉还没有完,用它们还可以做除法哩!举例来说吧,在计算2048÷128的时候,只要用它们各自的代言人11和7相减,就得到新代言人4,再由4找到对应的新原数16就是答案。当然,我们知道,这是因为50e1ebdee9ccd51b5c7ec36f890c8ee0.png。 也就是说,如果我们能够制作这样一份对数表,我们就可以轻松求解大数字之间的乘除法。但是很遗憾,在斯蒂费尔的时代,还没有分数指数的概念,如果不是数列中的数要怎么运算(例如17×127和2049÷257)呢?它们没有代言人呀! 时间来到了1614年,苏格兰数学家约翰•纳皮尔沿着斯蒂费尔的思路花了20年的时间制作了第一份对数表,并发表了他的著作《奇妙的对数表说明书》,从此一举成名。后来另一位瑞士数学家约布斯特•比尔吉也曾独立于纳皮尔制作了一份对数表,但是直到1620年他才发表他的著作《等差数列和等比数列》,并公布他关于对数研究的成果。此时,距离纳皮尔公开发布成果已经过去6年时间。究竟他们两个谁是对数的发明者,是否其中有一个人是抄袭,等等,还是引起了一场争论。由于他俩都曾坚称花了很多年时间进行研究,各自开始的时间又没有确切的文字记载,所以除了比尔吉发表对数成果的年份比纳皮尔晚6年之外,其他都得不出令人信服的、证据确凿的结论。但是,多数人认为纳皮尔的对数思想略早于比尔吉,而根据比尔吉的手稿推断,他写作成功于1610年,即作品早于纳皮尔,因此按理说他们俩应该都是对数的发明人。但是后来学术界还是以发表成果的时间先后关系承认了纳皮尔是对数的发明人。 纳皮尔和比尔吉制作对数表的思路基本上是一样的,他们都是从整数次幂的等式eeb2da60e4a069e6db81ba874b685679.png出发制作对数表。注意哦,我们上面说了,当时的人们还没完全认识指数,他们只认识整数幂的指数(即y为整数的情况),这点根据自然数的重复乘法显然是很容易理解的,但是对于幂为分数和实数的指数,当时人们是无法完全理解的,比如y为无理数的时候,人们无法理解等式eeb2da60e4a069e6db81ba874b685679.png的意义。 纳皮尔和比尔吉当时都从整数y出发,寻求一个使x的分布相对密集的方案,然后对每个x找到尽可能接近的y。 那这个底数b的值应该怎么取才能使x的分布较为密集,从而提高对数表的使用价值呢? 我们举个例子:如果取b=2,这时候a7fe65c9b22cf1b8d1c1ef5025b6d0a9.png,当y按照步长为1进行变化的时候,其对应的x是这样的分布情况: b07c3dc7abf5b2c099c954e20158003d.png 从这个表可以看出,由于底数b的数值偏大,造成了x的数据分布离散度也较大,如果这时候我们要找一个与x=798对应的对数y,那么根据这份表显然是没办法找到的。 所以底数b不宜过大,应该取一个比较接近1的数,这样对于每个整数y,其对应的x变化是非常缓慢的,也即x的分布会比较密集,从而达到事先的预期。比尔吉当时取的底数b=1+10-4=1.0001,这是一个大于1且接近于1的底数,而纳皮尔则取了一个小于1又接近1的底数b=1-10-7=0.999999。 按照比尔吉的方法,两个相邻整数y和y+1次幂对应的x可以分别表示如下: 929726eb9456cef6cb5efc6afb2070ea.png fabfd74ae181bc505c338132e7191fb7.png 为什么会有一个∆x呢?我们是这样处理的,当指数的幂从y增加到y+1的时候,其对应的x也有一个增量,我们把这个增量记为∆x,即当y增量到y+1的时候,对应的x在原来的基础上增加了∆x,相信学过微积分的同学应该可以看出来了,这其实就是微分的思想。 我们把上面两式相减,得: 0feb73afc4399bcc84a16b1449eecf9d.png 这里其实还有一个关键增量被隐藏了,我们把它拎出来,它就是∆y=y+1-y=1,把这个增量重新代入上面的等式,可得: 81773035c2ceb67cd66d80d6d279d2a5.png 这个结论的意思就是当y按照步长(或称“增量”)1进行递增时,其增量∆y(这里是1)与x的增量∆x之间的比值等于44422bc3e985d7a75795c2e290bbcfc2.png。我们再改写一下这个等式的形式,得:  5ed2f3b4da718416cff7843c383810d2.png            (式1.1) 仔细观察一下这个等式,如果能够把左边那个10-4给消灭掉,那么这个等式最终可以简化成一个漂亮的差分方程: 7134ae8f24f367d7e645e45b5ed7335d.png   那怎么做才能达到这个目的呢? 如果我令y的步长∆y=10-4,即步长缩小了104倍,同时将指数的幂放大为原来104倍,即步长缩小的倍数和幂的放大倍数是一样的,则原来的比尔吉指数就变为:   735d9773059495359ce6d676a62dd289.png        (式1.2) 注意哦!这个等式的幂多了个104,但是我们已经让y的步长缩小为∆y=10-4,所以这时候(式1.2)的幂dc628d6367e48d3775120b7ee1686ea7.png的步长ad3696ae4006b20b234482e1a579233f.png还是1,那么按照式1.1,我们用ad3696ae4006b20b234482e1a579233f.png代替∆y代入式1.1,得到差分方程: 7134ae8f24f367d7e645e45b5ed7335d.png 整理可得:  e0d069017ee73ad67af9ded3183e58a6.png        (式1.3) 这个等式可以理解为在式1.2的前提下,y轴上的每一个∆y一 一对应了x轴上的一个∆x,而且满足式1.3。实际上也可以理解为y轴和x轴上一 一对应的一对分割,我们将这对分割统一记为D,其意义就是:当∆y以10-4的步长对y轴进行分割时,其对应的x轴的分割步长639200f03eb0e5475ecb3834b3588147.png。注意哦,我们这种分割是对y轴进行的等距分割,此时对应的x轴的分割步长刚好为639200f03eb0e5475ecb3834b3588147.png,如下图所示: 2fdb128e296ff04a24a174a4aa67ebbf.png (图1.1) 我们知道当y=0时,x=1,那么从这两个初始值出发,我们令71e9651024b99709d903ff726459dbc0.png29ceea82f830ff79b0484e029dc54f5c.png,根据式1.3,y轴和x轴上的分割区间满足如下等式: 88eab5beabd082f7fb213c1a1d3d1a84.png(式1.4) 其中,6db9d84ae7daa5814eabbd332bf56235.png,是等距分割的端点,981bdbb9a22999f3d8a09cad2ec7383f.png651f0bbe94322a31b6d0fc0ef5b1dda4.png在式1.2的指数运算下对应的值,且6a27e9efe48a61dc666e2a68393b610e.png。 现在对于y轴上任意一个点s,以及其对应x轴上的点t,我们对式1.4进行逐项累加(类似于对差分方程进行积分),得到: adf5fcee670eb331c170d74a83dfd977.png (式1.5) a48bcf433afc921dbc939110a44c071d.png (图1.2) 我们仔细观察一下式1.5右边的那个求和式子,这个02364c81fd7f9991da28851e4d65a43f.png不就是区间6a27e9efe48a61dc666e2a68393b610e.png的长度乘以高为936fa67725cee2ec7638188cf8a2479b.png的矩形面积吗?为了看清楚式1.5的几何意义,我们在平面上画出f(x)=1/x的图像,然后从x轴上的1开始,按照639200f03eb0e5475ecb3834b3588147.png的增量关系不连续的增加,一直到达点t,并以此作出函数f(x)=1/x的所有外接矩形: e483977edd077b1532c72cc9803372dd.png (图1.3) 从图1.3可以看出,式1.5右边的这个和3b699564b8886912804044ee27d71f91.png实际上就是函数f(x)=1/x在1到t之间与x轴围成的所有外接矩形的面积之和。这一点非常非常非常重要,请仔细琢磨琢磨,重要的事情只说一遍! 有了这个几何意义,下面就是很自然的一个想法:我们能不能让这个和3b699564b8886912804044ee27d71f91.png严格等于函数f(x)=1/x在1到t之间与x轴围成的曲边梯形面积?(注意哦,我们的希望是等于曲边梯形的面积,不是外接矩形的面积之和哦) 为什么会产生这样的想法呢?你想啊,当这个∆y不断变小的时候,6a27e9efe48a61dc666e2a68393b610e.png也是随着变小,即分割D越来越细,那么这时候1.5式右边的这个和3b699564b8886912804044ee27d71f91.png(也就是图1.3的外接矩形的面积之和),也会非常接近于函数f(x)=1/x在1到t之间与x轴围成的曲边梯形面积。既然非常接近了,那我们当然希望他们严格相等啊。 虽然在那个时候(1650年左右)还没有微积分,但是人们早就懂得用无限分割法来求解函数曲边梯形的面积了。比如求解抛物线在0到1之间与x轴围成的曲边梯形面积,就是沿着x轴分割无穷多个区间,然后用这些区间与抛物线之间形成的外接矩形(或内接矩形)的面积之和去逼近曲边梯形面积,当分割越来越细时(分割步长趋于0),外接矩形面积之和就严格等于曲边梯形面积。 354571e2a54d35fa2ef86a19d1159c31.png (图1.4) 那么同样的,对于比尔吉形式的指数 735d9773059495359ce6d676a62dd289.png 按照无限分割法的思想,当这个分割D越来越细时(分割步长趋于0),外接矩形的面积之和3b699564b8886912804044ee27d71f91.png就严格等于函数f(x)=1/x在1到t之间与x轴围成的曲边梯形面积。那怎么样让分割步长趋于0呢? 我们可以取一种简单的方法,直接把上述的比尔吉指数中的104换成n,得:  fe0a13ef6a80046d597238416ed9b0f4.png            (式1.6) 这时候为了保证指数的幂ny的步长为1,则y的步长必须为:8714ea86bb6574c79243cb4e92d6b20d.png,因为只有幂ny的步长等于1,才有我们上面的差分方程和外接矩形面积之和这些结论。所以,当n趋于无穷大的时候,y轴的分割步长8714ea86bb6574c79243cb4e92d6b20d.png就趋于0,x轴的分割步长9165b91902348feefe9ae5415f48c666.png也会趋于0,根据无限分割法,当n趋于无穷大时式1.5右边的这个外接矩形面积之和3b699564b8886912804044ee27d71f91.png就严格等于函数f(x)=1/x在1到t之间与x轴围成的曲边梯形面积。而且,当n趋于无穷大时式1.5左边的约等号也变为严格的等号,即: 49ba4c7369d4686250cb305a50be158d.png (式1.7) 这时候比尔吉形式的指数为:   83c2422cffa041df42336fb7e67498d3.png              (式1.8) 为什么会这样?我们上面说了,把104换成n,然后令n趋于无穷大,这时候对于y轴上的任意一点s,以及对应的t,式1.6不就变成式1.7的样子吗?(这时候的y和x在取极限之后就对应了s和t) 到这里,我们本文开头所提到的那个从天而降的UFO(极限f98f95fdaaa96fff6f92f3712ca48a9f.png) 终于在式1.8中现身了,这正是我们苦苦寻求的UFO的来历。 也许上述引出这个极限的过程还是稍显复杂,我们再次捋一捋它是怎么出现的。 为了制作分布相对密集的对数表,提高对数表的使用价值,比尔吉取一个非常接近1的数(1.0001)作为指数的底数,然后让指数的幂y按照步长为1进行增量,并通过同倍数地缩小步长和放大指数幂的方法得到了形式简洁的差分方程(式1.3)。通过差分方程两边进行累加求和,我们得到了y轴上任意一个点s的近似等式(式1.5),这个等式的几何意义是函数f(x)=1/x在1到t之间被分割D切割之后所形成的外接矩形的面积之和。然后自然而然的,我们想让外接矩形的面积之和严格等于函数f(x)=1/x在1到t之间与x轴围成的曲边梯形面积,最后利用无限分割求曲边梯形面积的思想,我们很自然地将比尔吉的指数幂104换成n,并令n趋于无穷,使得分割D越来越细(分割步长趋于0),从而得到“外接矩形的面积之和严格等于函数f(x)=1/x在1到t之间与x轴围成的曲边梯形面积”的结论,而这时候比尔吉的指数就相应地出现了极限f98f95fdaaa96fff6f92f3712ca48a9f.png,这个极限实际上就是自然对数的底数。 比尔吉当时所用的底数实际上是8b8c28d5cc51ecf22c445d137858e437.png,和我们现在所知的自然底数e的前三位底数是一样的,只不过当时比尔吉并不知道他正在用的底数就是一个非常接近e的数。 从式1.7我们可以得出,对于y轴上任意一点s以及对应的t,当n趋于无穷时:  89136845d4431d356a5c3915c3c8fa0e.png       (式1.9) 这个s其实就是对数,式1.9是一个非常著名的公式,在牛顿莱布尼兹还没有发明微积分之前,对数实际就是通过求解函数f(x)=1/x在1到t之间与x轴围成的曲边梯形面积来计算的,这正是对数的几何意义。我们以前学对数的时候,虽然都能理解它是指数的逆运算,但是这个逆运算究竟是怎么计算的?或者说这个逆运算究竟在计算什么?对于这些个问题我们心里完全没谱,因为除了知道a5b01c12f1eae99cf461893e04dd4306.pngf6bd7c1183809cbfc15aedbdb44521e4.png逆运算的一个记号之外,我们对这个记号背后的几何意义一无所知。 而现在,我们终于知道了这个记号的背后实际上蕴含了一个很直观的几何意义,它原来是这个特定函数f(x)=1/x在1到x之间与x轴围成的曲边梯形面积!(我就不信这个结论没有刷新你对自然对数的认识!) 可能有些学过高数的同学会说,根据牛顿-莱布尼兹公式,自然对数lnx其实就是f(x)=1/x的一个原函数啊,也就是说lnx的导函数就是1/x,而且我们计算lnx可以通过泰勒级数来计算: ff7a1b6fba38af1fb56c646612ef381e.png 但是你仔细想想,这显然已经把逻辑顺序给搞反了啊,你在计算lnx的导函数的时候就已经用到了这个极限f98f95fdaaa96fff6f92f3712ca48a9f.png和积分: d1e66638ae3c63d98af0cc5536ecbcca.png (注:积分变量的符号可以随便选,不影响积分结果和几何意义) 所以是先有了这个极限和积分之后才有“自然对数lnx的导函数等于1/x”。也就是说, 如果我们要对自然对数进行寻根究底,那最终还是要落到”极限f98f95fdaaa96fff6f92f3712ca48a9f.png是怎么来的”这个问题上。 至于用泰勒公式求解lnx,实际上不完全可行,因为泰勒级数的收敛范围只有(0,2]这个区间,而在这个区间之外的x,你是无法利用泰勒公式来求解lnx的,因为泰勒级数不收敛。所以用泰勒公式来理解lnx稍显片面,更加准确的理解还是要归结到这个极限f98f95fdaaa96fff6f92f3712ca48a9f.png和积分969711bf8dd0ccf5486dac2a8f776baf.png。 现在你看懂了我上面的核心观点了吗?我其实是想努力告诉你这个极限f98f95fdaaa96fff6f92f3712ca48a9f.png究竟是怎么来的,以及由这个极限所引出的关于对数的积分定义和几何意义,而不是直接用这个极限来解释对数。(好好琢磨一下) 【2  e的存在性】 我们已经巴拉巴拉废话连篇地引出了这个极限f98f95fdaaa96fff6f92f3712ca48a9f.png,不妨就把它记为: 76dbd5daab579541bc2bca97cf5545e2.png 接下来你是不是以为我要来求解这个e的具体数值呢?很抱歉,还不能这么做! 你怎么知道这个极限就一定存在?有没有可能极限不存在呢?如果连这个极限都不在,那还有什么意义呢? 好,我们现在就来证明这个极限的存在性,证明过程虽然很简单,但是可能会引起部分读者的不适。为了避免因此而劝退本公众号来之不易的那几十个粉丝,我建议你可以直接跳过这一部分。 首先,简单粗暴空降一个定理:单调有界定理。(对这个定理的证明有兴趣的同学可以去看看实数系六大基本定理,这里就不再证明了,太艰深晦涩了!) 这个定理是说单调有界数列必收敛。也就是说,单调递增有上界或者单调递减有下界的数列都有极限。 那么根据这个定理,我们必须证明这个数列单调且有界,这样才能证明极限的存在性: 110ca6f1caea10faaa9d6a9df6afae8c.png 利用二项式定理(高中学过的排列组合定理)将这个数列进行展开: 5feecbc47b25a4414c860736dbd3c190.png    (式2.1) 由于9d0ecdd6d1050a41a446178f930f2209.png31e841e4658d79d1fdbc44992211336c.png,‧‧‧‧‧‧,0cc0ab7414c2c2dac2b71cf156287891.png 所以,对于式2.1的每一项,我们用4659d5de02585467aec6593c86fa9bef.png,‧‧‧‧‧‧来代替因子65485a24e4d69630421a55d471cb53c8.png,‧‧‧‧‧‧,即2.1式的每一项都放大。然后我们再加上一个正项: a3170ac9574c7f91f0a47d44bc14b6c7.png 则有不等式: ad6b8213b66c9bbee4690faca59268cc.png 而实际上不等式的右边就是c61d1e9a7003144c229796ffb63d1f9c.png,因此有: 75acf2dbc5553faf47525b51559a56ba.png 因此,数列84c14b0dc479d3a5dc5db69e131207fe.png单调递增。 我们再观察式2.1,对于任意的自然数n,必然有: 56580f82cf0e4a1ad030b229a770a623.png 则数列84c14b0dc479d3a5dc5db69e131207fe.png满足如下不等式: b464aac2bf63072013161bfaf026d25c.png 所以,数列84c14b0dc479d3a5dc5db69e131207fe.png有上界(3就是其上界之一)。 综上所述,数列84c14b0dc479d3a5dc5db69e131207fe.png 单调递增且有上界,根据单调有界定理,数列84c14b0dc479d3a5dc5db69e131207fe.png必收敛,即其极限存在。 这就证明了数列84c14b0dc479d3a5dc5db69e131207fe.png的极限的存在性。既然极限存在了,那我们就用字母e来表示这个极限: 76dbd5daab579541bc2bca97cf5545e2.png 第一次使用e来表示这个极限的是欧拉,但是采用这个字母的原因不详,可能因为e是指数“exponential”的首字母。 那这个e的数值具体等于多少呢? 用泰勒公式即可算出来: 9d4f2feef5d26001ee1c50b89aa31eeb.png 它的数值约为: 4be9707ee98ae1ad90f1ad7c63ad19ad.png 这是一个无理数,即无限不循环小数。 关于e的数值和无理数的相关证明我就不再展开赘述了,不然又得吓跑一拨读者! 【3  e的意义】 现在我们来看一些比较接地气的例子,看看e究竟有什么现实意义。 1、复利模型 1683年,一个名叫雅各布•伯努利(约翰伯•努利的哥哥、丹尼尔伯•努利的伯伯)的数学家发现了银行利息的秘密。设想你在A银行里开了一个银行账户,然后这个银行说只要你愿意存钱到他们的银行,他们就会付给你一个100%的年利率(现实中当然是不可能的啦!),即你年初存入1元钱,年底便可获得1元的利息,利息每年计算一次,且可以作为下一年的本金继续计算利息,也就是说这家银行可以按照利滚利或者复利的方法来支付你的本息。这就意味着,n年后你的财富会增加到原来的708ccb463a078c242cd7039e63181c6e.png倍。比如,你最开始存入了 100 美元,年底你会得到200美元。现在设想你发现另一家银行B,它也提供100%的年利率,但它是每半年计算一次利息支付给你;。当然,每半年的时候,你不会得到100%的利息,你必须用它除以2,也就是说每六个月你会得到50%的利息,因此,如果你将钱存入这个B银行的账户,那么一年后,它会以50%的半年利率计算两次复利,结果就是你的财富会增加到原来的d817a10694f7309bc9030a9ebab25129.png 倍。比如,你最开始存入了 100 美元,年底你会得到225美元。你会发现B银行这钟半年结算一次利息的存款收益显然比A银行要来得更大。我们再作进一步思考,如果在同等年利率的前提下,银行能够提供每个季度结算一次利息的方案,那么我们的存款收益肯定会继续增加,也就是说,如果不断提高利息结算次数、缩短利息结算周期,比如:每月结一次、每周结一次、每天结一次,甚至每小时结一次,极端的情况下,银行每时每刻都会结算利息给你(连续复利),那么我们的存款收益肯定是越来越大。若真有这样的银行,那我们投入本金之后每天就可以躺着数钱了,而且钱会越来越多、越来越多,成为亿万富翁只是迟早的事。有没有这样的可能呢?如果利息结算次数无穷大,我们的财富会不会也一直增长到无穷大呢?你想得倒美,当然不可能啦,不然满大街都是亿万富翁了。 我们来看一下,假设银行提供的年利率还是100%,且银行每年结算n次利息,那么每次结算的利率就是1/n,你在年初投入1美元,在年底的时候你的财富就增加到: 9c6d993df995b921e438a968ae98d583.png 这个不就是我们上面的那个以e为极限的数列吗?当n趋于无穷大的时候,也就是结算利息的次数无穷大、结算周期无穷小的时候,一年后你的财富增长极限就是e=2.718281‧‧‧‧‧‧倍。你在银行投入1美元,尽管银行承诺给你一个100%的年利率,而且在一年内给你结算无穷多次利息,但是一年后你的财富增长不可能超过e=2.718281‧‧‧‧‧‧倍。因为e就是你的财富增长极限,它像一块天花板,挡住了你企图靠1块钱疯狂赚取 1个亿的小目标。 我们通过一个表来看看n不断增大时的财富增长趋势: b3b47a15cb54e59f3b34f4464facc906.png 从具体的数值可以看出,只要在年利率保持100%不变的情况下,不断地提高利息的结算次数,财富增长的倍数越来越逼近acfda3738de909da4138c7a6d909808b.png。 2、增长模型 某种类的一群单细胞生物每24小时全部分裂一次。在不考虑死亡与变异等情况下,那么很显然,这群单细胞生物的总数量每天都会增加一倍。据此我们可以写出第x天的细胞总量: 78005dfaa5ea4fd0e40cf48c8980e8c9.png 其中,1表示原有数量,100%表示单位时间内(24小时)的增长率。根据细胞生物学,每过12个小时,也就是分裂进行到一半的时候,平均会新产生一半原数量的新细胞,新产生的细胞在之后的12小时内已经可以再分裂了。因此一天24个小时可以分成两个阶段,每一个阶段的细胞数量都在前一个阶段的基础上增长50%。所以,一天之后的细胞总量: 913778d44d8bf4f65fded7608efd43e1.png 即通过两个阶段的分裂之后,一天内细胞总量会增长为原来的2.25倍。 倘若这种细胞每过8小时就可以产生平均1/3的新细胞,新生细胞立即具备独立分裂的能力,那就可以将1天分成3个阶段,在一天内时间细胞的总数会增至为: cc00cd4eaad35a567f47532cf52eefca.png 即一天之后细胞数扩大为2.37倍。实际上,这种分裂现象是不间断、连续的,每分每秒产生的新细胞,都会立即和母体一样继续分裂,那一天24小时最多可以得到多少个细胞呢?答案是: 018376c5effbb3708b14005e766ab5d5.png 这个结果跟上面的复利问题类似,即当增长率保持100%不变时,一天24小时内细胞种群最多只能分裂e=2.718281‧‧‧‧‧‧倍,这是细胞分裂增长所能达到的极限值。 通过上面两个例子,我们不难发现,只要是涉及到和“增长”有关的概念,自然底数e就会出现。在大自然中,无论是生物的生长与繁殖,还是放射性物质的衰变……类似于复利问题这样的增长方式比比皆是。而e代表的就是某种“增长的极限值”,是一种内在的规律。如果说π代表了一个完美的圆周率,那么e就代表了一次完美的增长。虽然现在人们使用极限运算的概念来定义了e,但是仔细想来,e和π都只是安安静静地在数学历史的长河中等待人们发现的一个“秘密”。无论你学过数学还是没学数学,e都在那里,宠辱不惊,颇有种冥冥之中自有e意的感觉……,所以这样看来e君确实还是挺“自然”的。 【4  e的性质】 1742年,英国数学家琼斯发现了对数和指数的互逆关系,这也正是我们今天关于对数的定义:已知a是不等于1的正数,如果a的b次幂等于N,那么b叫做以a为底的N的对数。 当指数函数和对数函数有了e之后,简直就是如虎添翼。因为e具有非常完美的性质,只要我们把复杂的计算问题转化为关于e的问题,一切计算都显得十分简洁明了,真是非常符合其自然底数的称呼。 下面我们就来看看几个非常有代表性的性质: 1、普通指数函数转换成自然指数函数:665532bc146bc4256efeebba19c7692d.png。 根据09998a6b5b82b71e47cec3941bd7c531.pngc9503ead4dfabebd54b2d57af5402126.png互为反函数的性质易得:caafd16e78c40b65a15e901535c9cff9.pngb5420749b8befa1ecf6c7cfa39fc9e40.png替换408e42ebad930c64dfa32e8ec2c61810.png,得:7011fb92c3af5f86b3e1835f5160bcef.pnge45fde1ff7db917b688a19d445ede2c6.png,证毕。 这个公式表明,每个底为a的指数函数都是09998a6b5b82b71e47cec3941bd7c531.png的幂函数,幂为111f54fdb9b33dd9ab4d2a4aa0337437.png 2、普通对数函数转换成自然对数函数:b48df09e883d0a3121331d85ac8bf9c0.png 根据b5420749b8befa1ecf6c7cfa39fc9e40.png512050c23f3606e15051698a64ac39d2.png互为反函数的性质易得:a9c0348591e6efbd1d95c140b7cae677.png 两边取对数得:d3b4dd83cac6e87c2ca88f29adb55c35.png 所以b48df09e883d0a3121331d85ac8bf9c0.png,证毕。 这个公式表明,每个底为a的对数函数都是c9503ead4dfabebd54b2d57af5402126.pngc6f4c09ca1bc71eab4b8429ce702ebfd.png倍。 就这样,我们能够把所有指数函数和对数函数都转换成以e为底的函数,我们称09998a6b5b82b71e47cec3941bd7c531.png是自然指数函数,c9503ead4dfabebd54b2d57af5402126.png是自然对数函数。一切涉及指数和对数的计算都可以转换成自然指数和自然对数的运算,很多计算就会因此变得无比清晰明了,简直犹如大秦一统天下! 3、对数运算的降级作用:化乘除法为加减法。 化乘法为加法:b637b03e4f505202a678a37e2bc16037.png 证明:设daea25f38d80694130d98086d7e6775c.png,根据对数的定义, 30db01bcf0a505d6113f32380a8d5894.png。于是,f968d1a10458a4e403377e05627aa8dd.png。再根据对数的定义,可写成6c9dc87b9cd109376da8722b1b2ccb0c.png。特别的,当M=N时,6c9dc87b9cd109376da8722b1b2ccb0c.png,重复利用这个运算,即可得e0ce15f27a52878fd88ea3f3397fa249.png,当n为整数时也成立。 化乘法为加法:6e703d64a180203fda587a7e09e277b3.png 证明:根据上述化乘法为加法的运算,0d96a240f749f99c40f9117139af109b.png。 对数这种化乘除为加减的霸气功能,能够将高级和复杂的运算降为次级运算,大大简化了运算过程,提高了运算的效率,这是对数最重要、最常用的一个功能。对数被发明出来之后,当时一位叫拉普拉斯的数学家就曾说过一句话:对数的发明让天文学家的寿命增加了一倍。可以看出对数在处理天文大数字计算方面的重要性。 4、对数函数和指数函数的导数: 我们先来看看自然对数函数y=lnx的导数,根据上面的积分形式定义: 0bad58a07be3ae4cd6e3fc5ef5c38fc1.png 我们一眼就能看出来lnx是1/x的一个原函数,根据牛顿-莱布尼兹公式,很快就能得到lnx的导数为: 6c6ad613b97ec92b8ae8ec8c6cc15012.png 对于更一般的对数函数512050c23f3606e15051698a64ac39d2.png,其导数为: 87f9bf0792e263199e9ee14da6ae359a.png 比lnx的导数多出了一个因子c6f4c09ca1bc71eab4b8429ce702ebfd.png,显然没有lnx的导数来得简洁明了,但是却与e脱不了干系,因为含有以e为底的对数。 再来看看自然指数函数40454f3bb4906c2377f8ec05c33a2ccc.png的导数。 根据对数的定义有:299ac81253edbdaf60c6b140a9497827.png,两边对x进行求导: 1c0288465f9c564448df768f7b9df56f.png 再根据上述的自然对数函数的导数以及链式求导法则,可得: 4e97b9482e37890811aabaa33652f275.png 移项整理之后得到: 078156111f2e1b9747ed16de287e21a4.png40454f3bb4906c2377f8ec05c33a2ccc.png代入上式,即有: a085af8fe127ec44377addec80f688b7.png 对,你没有看错,09998a6b5b82b71e47cec3941bd7c531.png导数之后,居然还是它自己!大家都知道,求导是降维操作,但这对 09998a6b5b82b71e47cec3941bd7c531.png无效。不好意思,随便你怎么求导,无论你求导多少次,我仍然是我!(这简直无敌啊,无视维度的存在!犹如上帝一般) ec76abbf9049bb288d870e65046414f8.png 同样的,对于一般的指数函数b5420749b8befa1ecf6c7cfa39fc9e40.png,其求导的结果: 9960cdd9ba55e08f75e0453a7324d61f.png09998a6b5b82b71e47cec3941bd7c531.png的导数多出了一个因子111f54fdb9b33dd9ab4d2a4aa0337437.png,显然也没有09998a6b5b82b71e47cec3941bd7c531.png的求导结果来得漂亮和简洁,但与e也有关联。 从对数函数和指数函数的导数我们可以看出,任何不以e为底的一般对数函数和指数函数求导之后,一定会出现一个与e相关的常数因子,比如:一般对数函数512050c23f3606e15051698a64ac39d2.png求导之后出现了c6f4c09ca1bc71eab4b8429ce702ebfd.png常数因子,这个因子其实已经包含了e为底的对数。同样,一般指数函数b5420749b8befa1ecf6c7cfa39fc9e40.png求导之后也出现了与e相关的因子111f54fdb9b33dd9ab4d2a4aa0337437.png。仔细想想这个结果,难道你就不觉得e是神一般的存在吗?无论什么样的对数函数和指数函数,在求导运算下,肯定会与e产生必然联系。而导数又是整个微积分的核心概念之一,微积分又是所有现代数学和理论物理的基础。所以e频频以“自然”之名义出没在高等数学和物理学中,我们并不会感到惊讶。现在你能想象e究竟有多重要、有多神奇了吗?凭什么它可以称之为自然底数,它究竟“自然”在哪?下面我就简单举一些与e相关的定理公式,让你好好感受一下e的威力。 5、与e相关的定理、公式 与e有关的数学定理、公式太多了,可以说多如牛毛、数不胜数。这也是为什么e已经成为科学各领域中最重要的常数之一的原因。 欧拉公式:373e39a62183a00c155429f881799e12.png, 当511ee22e92aa5e1fdf19fb34d59dbbec.png时,就得到“上帝公式”:7fd2deb822327b4eda765534b7863595.png,这个公式号称史上最优美的数学恒等式,从这个公式中,可以看出 e在复指数函数和三角函数之间建立了一个桥梁,并将π、i、1、0这些最重要的数学常数联系在了一起,简洁、优美,内涵极其深刻。数学王子高斯就曾经说过一句话:“如果一个人第一次看到欧拉公式而不感受到它的魅力,那么他不可能成为数学家。”后续我会单独写一篇如何理解欧拉公式的文章。 素数定理:54d3bcd15e3a1d284176b428afec53fc.png,或者 73cf1c0697b836c02acfc27fa99686b2.png。这两个式子是等价的, c9a345195bddfaae7d5f31a12f38595a.png是一个素数计数函数,它的含义是小于等于x的素数的个数。这个公式中虽然没有显式出现e,但是已经出现了以e为底的对数ln,其实就是隐式的出现了e。素数和e的这种联系很奇特,要知道素数是整数范畴的概念,属于离散数学,而e是分析范畴,属于极限和连续领域。它们之间竟然有这么紧密的联系,很不可思议。这个定理跟黎曼猜想有关,也是多处出现了e和ln。 高斯正态分布:正态分布的概率密度5c3a35a79fee3e3f16f07a6762dab663.png,其中a是正态分布的平均值, 30ddc4dc4f55051f64f5d4e101cd744b.png是标准差,f635eec91c24f64b3143888756995b44.png是方差。正态分布应用太广泛了,而且根据中心极限定理,任何大量的独立变量之和都趋于正态分布,这里面e当仁不让的占据着核心地位。 除了数学领域,物理学领域也有大量的公式和定律中出现e。例如麦克斯韦速率分布定律、气体在重力场中的玻尔兹曼分布、布朗运动规律、放射性元素衰变等等等等。 【5  超越数】 本来这篇文章到这里就可以结束了,但是仔细考虑了一下,我还是想基于“e是无理数”这个点再简单延伸一下。 根据实数的定义,我们知道实数包含了有理数和无理数,有理数我们都很好理解,不就是分数嘛,而对于无理数,我们是从41116da6e0b302f536e230e49b435079.png这样的数开始认识到无理数的,这个无理数的发现还引发了第一次数学危机。现在我们回头来看,很容易理解41116da6e0b302f536e230e49b435079.png这样的无理数,它其实就是边长为1的正方形的对角线长度。用方程也非常好表示,方程614c8aa1547c67b1140b84e970da6738.png的一个正根就是41116da6e0b302f536e230e49b435079.png,这是一个无理数。而我们上面也说了,e、π也是无理数。那为什么41116da6e0b302f536e230e49b435079.png3bd1805dba80b6912f562bb94a234588.png这些无理数可以用根式表示,而e、π却只能用一些特殊字母来表示?如果让你在无理数里面给数字分类,相信你肯定会把41116da6e0b302f536e230e49b435079.png3bd1805dba80b6912f562bb94a234588.png分为一类,把e和π分为另一类,那么它们的区别在哪里呢? 数学家们发现,像41116da6e0b302f536e230e49b435079.png3bd1805dba80b6912f562bb94a234588.png或者是由若干根号组合表示出来的无理数,都可以成为整系数多项式方程的根: 1c62296eb08d1aa3185d96ebfee72b06.png 数学家们称这些数为“代数数”。 而像e和π这类无理数却无法成为整系数多项式方程的根,这些数称为“超越数”。 通过区分“代数数”和“超越数”之后,数学家们发现“几乎”所有的实数都是超越数,也就是说实数里超越数是占绝大部分的,代数数与超越数相比是几乎可以忽略不计的,而且代数数是可数集。哇,这个结论实在太令人吃惊了!我之前写过一篇关于长度的文章,里面提到了可数和不可数的概念,比如有理数是可数集,我们可以对每一个有理数进行编号,然后一个一个的数下去把它们都数完。但是现在,根据超越数的理论,包含有理数和41116da6e0b302f536e230e49b435079.png3bd1805dba80b6912f562bb94a234588.png这类无理数在内的代数数竟然也是可数的,这太反直觉了,因为我们一直都以为41116da6e0b302f536e230e49b435079.png3bd1805dba80b6912f562bb94a234588.png这类数就是无理数的主要部分,而且这个集合的元素应该比理数集“多”很多才对啊! 既然代数数是可数的,而我们都知道实数是不可数的,那么结论就只能是“超越数是真正不可数的”,所以数学家才说“几乎所有实数都是超越数”。原来我们一直在讨论的实数基本上都是超越数啊!难以置信! 但是,怎么证明一个数字是超越数呢。比如你要证明π不能用若干根号表示出来,你怎么证明呢?其实到1768年,数学家们才第一次证明π是无理数,而证明π是超越数是100多年后的1882年的事。也正因为证明了π是超越数,人类才彻底解决了古希腊三大几何难题中最难的一个“化圆为方”问题。其原因在于我们已经证明尺规作图只能作出特定形状的一些代数数长度的线段,超越数长度的线段是不可能作出来的。所以证明π为超越数,就证明“化圆为方”问题无解。 除了π,数学家还证明了e、85695b3192cf42a1653e5be82bee678a.png、sin1这些数都是超越数。但是目前已经被被证明是超越数的数非常少,倒是很多感觉上必须是超越数的数,我们都还不能证明:比如e+π,e-π等等,这些数是否是超越数,都未能证明。由此可见,超越数虽然多,但是却很神秘。我们目前为止对超越数的认识非常有限。所以,不要自以为我们已经非常了解实数了,其实我们“几乎”不了解实数,因为我们对构成实数主要部分的“超越数”知之甚少。

参考文献:

[1]高观点下的初等数学,【德】菲利克斯・克莱因著,舒湘芹、陈义章、杨钦樑译,齐民友审;

[2]普林斯顿微积分读本,【美】Adrain Banner 著,杨爽、赵晓婷、高璞译;

[3]微积分和数学分析引论,【美】R.柯朗 F.约翰著,张鸿林 周民强译;

[4]不可思议的自然对数,黎渝 陈梅著。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值