KNN

 KNN:寻找与要分类样本距离最近的K个训练样本,之后以投票法选出K个训练样本中最多的类别即该分类样本类别。

关键代码

 1 def classify0(inX, dataSet, labels, k):
 2     dataSetSize = dataSet.shape[0]   
 3     diffMat = tile(inX, (dataSetSize, 1)) - dataSet # 求距离
 4     sqDiffMat = diffMat ** 2
 5     sqDistances = sqDiffMat.sum(axis=1)
 6     distances = sqDistances ** 0.5,
 7     sortedDistIndicies = distances.argsort()# 按照距离由近到远排序,返回index序列
 8     classCount = {}
 9     for i in range(k): #投票法选出K个点中最多的类别并返回该类别
10         voteIlabel = labels[sortedDistIndicies[i]]
11         classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
12     sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
13     return sortedClassCount[0][0]

sklearn包中有相关的API接口:

KNeighborsClassifierRadiusNeighborsClassifier 为最近邻分类,一个参数为K个点,一个为半径。

KNeighborsRegressorRadiusNeighborsRegressor 为最近邻回归。选择K个点或者半径R内点平均值作为待分类点的标签。

转载于:https://www.cnblogs.com/the-home-of-123/p/9173762.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值