【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

题目描述

给定平面 \(\text{xoy}\)\(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法。

从开线段集合 \(\text{I}\) 中选取出开线段集合 \(\text{S}\in \text{I}\) ,

使得在x轴上的任何一点 \(\text{p}\)\(\text{S}\) 中与直线 \(\text{x}=\text{p}\) 相交的开线段个数不超过 \(\text{k}\)

\(\sum_{\text{z} \in \text{S}}|z|\) 达到最大。

这样的集合 \(\text{S}\) 称为开线段集合 \(\text{I}\) 的最长 \(\text{k}\) 可重线段集的长度。

对于任何开线段 \(\text{z}\) ,设其断电坐标为 \(( x_0 , y_0 )\)\(( x_1 , y_1 )\)

则开线段 \(\text{z}\) 的长度 \(|\text{z}|\) 定义为:\(|z| = \lfloor \sqrt{ ( x_1 - x_0 ) ^ 2 + ( y_1 - y_0 )^2 } \rfloor\)

对于给定的开线段集合 \(\text{I}\) 和正整数 \(\text{k}\) ,计算开线段集合 \(\text{I}\) 的最长 \(\text{k}\) 可重线段集的长度。

输入格式

文件的第一 行有二个正整数 \(\text{n}\)\(\text{k}\) ,分别表示开线段的个数和开线段的可重迭数。接下来的 \(\text{n}\) 行,每行有4个整数,表示开线段的2个端点坐标。

输出格式

程序运行结束时,输出计算出的最长k可重线段集的长度。

样例

样例输入

4 2
1 2 7 3
6 5 8 3
7 8 10 5
9 6 13 9

样例输出

17

数据范围与提示

\(1\leq n\leq500\)

\(1 \leq k \leq 13\)

题解

这道题与【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集有很大的相似度

这里基于明白那道题的做法之上给出这道题的做法

把线段对应到 \(x\) 轴上,其实就变成了一些区间了,和那道题一样

但是有一种特殊情况,就是存在线段 \(x=r\) 的时候,如果按照那题的方式建图,就会出现自环,所以要换一种建图方式

考虑把每个区间的左右端点都变成 \(2\) 倍(离散化后),如果 \(l=r\) ,那么 \(r\) 加一,否则 \(l\) 加一,这样就可以防止自环的出现(想一想为什么)

然后同样的方式跑答案就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=2000+10,MAXM=(MAXN<<1),inf=0x3f3f3f3f;
int n,k,r,e=1,s,t,beg[MAXN],cur[MAXN],L[MAXN],R[MAXN],vis[MAXN],level[MAXN],p[MAXN],nex[MAXM<<1],to[MAXM<<1],cap[MAXM<<1],was[MAXM<<1],clk;
ll answas,val[MAXN];
std::queue<int> q;
std::vector<int> V;
std::map<int,int> M;
template<typename T> inline void read(T &x)
{
    T data=0,w=1;
    char ch=0;
    while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    if(ch=='-')w=-1,ch=getchar();
    while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
    x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+'0');
    if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int w)
{
    to[++e]=y;
    nex[e]=beg[x];
    beg[x]=e;
    cap[e]=z;
    was[e]=w;
    to[++e]=x;
    nex[e]=beg[y];
    beg[y]=e;
    cap[e]=0;
    was[e]=-w;
}
inline void discretization()
{
    for(register int i=1;i<=n;++i)V.push_back(L[i]),V.push_back(R[i]);
    std::sort(V.begin(),V.end());
    V.erase(std::unique(V.begin(),V.end()),V.end());
    for(register int i=0,lt=V.size();i<lt;++i)M[V[i]]=i+1;
    for(register int i=1;i<=n;++i)L[i]=M[L[i]],R[i]=M[R[i]],chkmax(r,R[i]);
}
inline bool bfs()
{
    memset(level,inf,sizeof(level));
    level[s]=0;
    p[s]=1;
    q.push(s);
    while(!q.empty())
    {
        int x=q.front();
        q.pop();
        p[x]=0;
        for(register int i=beg[x];i;i=nex[i])
            if(cap[i]&&level[to[i]]>level[x]+was[i])
            {
                level[to[i]]=level[x]+was[i];
                if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
            }
    }
    return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
    if(x==t||!maxflow)return maxflow;
    vis[x]=clk;
    int res=0;
    for(register int &i=cur[x];i;i=nex[i])
        if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+was[i])
        {
            int f=dfs(to[i],min(maxflow,cap[i]));
            res+=f;
            cap[i]-=f;
            cap[i^1]+=f;
            answas+=1ll*f*was[i];
            maxflow-=f;
            if(!maxflow)break;
        }
    vis[x]=0;
    return res;
}
inline void MCMF()
{
    while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),dfs(s,inf);
}
int main()
{
    read(n);read(k);
    for(register int i=1;i<=n;++i)
    {
        int x1,y1,x2,y2;read(x1);read(y1);read(x2);read(y2);
        val[i]=std::sqrt(1ll*(x1-x2)*(x1-x2)+1ll*(y1-y2)*(y1-y2));
        L[i]=(x1<<1),R[i]=(x2<<1);
        if(L[i]>R[i])std::swap(L[i],R[i]);
        if(L[i]==R[i])R[i]++;
        else L[i]++;
    }
    discretization();
    s=r+1,t=s+1;
    insert(s,1,k,0);insert(r,t,k,0);
    for(register int i=1;i<r;++i)insert(i,i+1,inf,0);
    for(register int i=1;i<=n;++i)insert(L[i],R[i],1,-val[i]);
    MCMF();
    write(-answas,'\n');
    return 0;
}

转载于:https://www.cnblogs.com/hongyj/p/9443388.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值