数论四大定理
中国剩余定理
求解二元一次方程组的解
模数互质的情况
a \(\equiv\) b (mod c) --> an \(\equiv\) bn(mod cn)
xa \(\equiv\) m1(mod ab), xb \(\equiv\) m2(mod ab) \(\Rightarrow\) x(a+b) \(\equiv\) (m1+m2)(mod ab) \(\Rightarrow\) x \(\equiv\) (m1+m2)inv(a+b)(mod ab)
n % abc % a= n % a
(a + b) % c = a % c + b % c
a / b % n = a * c % n \(\Rightarrow\) inv(b) = c inv(b + n) = c
a % b = ((a * n) % (b * n) ) / n
a, b, c互质
x \(\equiv\) m1 (mod a)
x \(\equiv\) m2 (mod b)
x \(\equiv\) m3 (mod c)
abx \(\equiv\) abm3 (mod abc)
acx \(\equiv\) acm2 (mod abc)
bcx \(\equiv\) bcm3 (mod abc)
x(ab + ac + ab) \(\equiv\) (abm3 + acm2 + bcm1)(mod abc)
x \(\equiv\) (abm3 + acm2 + bcm1)inv(ab + ac + bc)(mod abc)
x mod a = (abm3 + acm2 + bcm1)inv(ab + ac + ab)(mod abc) mod a \(\Rightarrow\) x mod a = bcm1 * inv(bc) (mod a) \(\Rightarrow\) m1 = bcm1 * inv(bc)
bcm1 * inv(bc) % b = 0
bcm1 * inv(bc) % c = 0
\(\therefore\) x = ( abm3 * inv(ab) + acm2 * inv(ac) + bcm1 * inv(bc) ) (mod abc)
模数不互质
a1 * x1 + y1 = c
a2 * x2 + y2 = c
a1 * x1 - a2 * x2 = y2 - y1
设x1 = x0是方程的一个解
则设n = a1 * x0 + y1, 设m = lcm(a1, a2) //lcm是最小公倍数
则c = m * k + n //(a + b) % c = a % c + b % c
欧拉定理
若n,a为正整数,且n,a互素,即gcd(a,n) = 1,则
a^φ(n) ≡ 1 (mod n) //φ(n)为欧拉函数
费马小定理
假如p是质数,且gcd(a,p)=1,那么a^p ≡a(mod p)
威尔逊定理
若p为质数, 则p可整除(p-1)! + 1;