[CTSC2017]吉夫特

[Luogu3773] [LOJ2264] [UOJ300]

题解

\(x!的2因子数f(x)=\sum_{i=1}^{ \infty} \frac{x}{2^i}\)

我们设\(g(x)=x,\)那么\(g(x)=g(\frac{x}{2})+\frac{x}{2}+(x\bmod 2)=\sum_{i=1}^{ \infty} \frac{x}{2^i}\)

那么$C_n^k $是奇数的条件即为:n在二进制下1的个数=k在二进制下1的个数+(n-k)在二进制下1的个数

综上, \(C_n^k\)是奇数的条件为: (n&k)=k

枚举方法见代码,比较巧妙

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
    register LL x=0,f=1;register char c=getchar();
    while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
    while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
    return f*x;
}

const int MAXN=222005;
const int MAXM=233335;
const int mod=1e9+7;

int a[MAXN],pos[MAXM],f[MAXN];
int n,ans;

int main(){
    n=read();
    for(int i=1;i<=n;i++){
        a[i]=read();
        pos[a[i]]=i;
    }
    for(int i=n;i>=1;i--){
        f[i]=1;
        for(int j=a[i];j;j=a[i]&(j-1))//枚举很巧妙
            if(pos[j]>i) (f[i]+=f[pos[j]])%=mod;
        (ans+=f[i])%=mod;
    }
    ans=(ans-n+mod)%mod;
    printf("%d\n",ans);
}

转载于:https://www.cnblogs.com/lizehon/p/10506560.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值