[Luogu P3773] [BZOJ 4903] [UOJ 300] [CTSC2017]吉夫特

22 篇文章 0 订阅
3 篇文章 0 订阅
洛谷传送门
BZOJ传送门
UOJ传送门

题目描述

简单的题目,既是礼物,也是毒药。

B 君设计了一道简单的题目,准备作为 gift 送给大家。

输入一个长度为 n n n 的数列 a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots , a_n a1,a2,,an问有多少个长度大于等于 2 2 2 的不上升的子序列满足:

Π i = 2 k ( a b i − 1 a b i ) m o d    2 = ( a b 1 a b 2 ) × ( a b 1 a b 2 ) × ⋯ ( a b k − 1 a b k ) m o d    2 > 0 \Pi _{i=2}^{k} \binom{a_{b_{i-1}}}{a_{b_i}} \mod 2 = \binom{a_{b_1}}{a_{b_2}} \times \binom{a_{b_1}}{a_{b_2}} \times \cdots \binom{a_{b_{k-1}}}{a_{b_k}} \mod 2 > 0 Πi=2k(abiabi1)mod2=(ab2ab1)×(ab2ab1)×(abkabk1)mod2>0

输出这个个数对 1000000007 1000000007 1000000007 取模的结果。

G 君看到题目后,为大家解释了一些基本概念。

我们选择任意多个整数 b i b_i bi 满足

1 ≤ b 1 &lt; b 2 &lt; ⋯ &lt; b k − 1 &lt; b k ≤ n 1 \leq b_1 &lt; b_2 &lt; \dots &lt; b_{k-1} &lt; b_k \leq n 1b1<b2<<bk1<bkn

我们称 a b 1 , a b 2 , ⋯ &ThinSpace; , a b k a_{b_1}, a_{b_2}, \cdots, a_{b_k} ab1,ab2,,abk a a a 的一个子序列。

如果这个子序列同时还满足

a b 1 ≥ a b 2 ≥ ⋯ ≥ a b k − 1 ≥ a b k a_{b_1} \geq a_{b_2} \geq \cdots \geq a_{b_{k-1}}\geq a_{b_k} ab1ab2abk1abk

我们称这个子序列是不上升的。

组合数 ( n m ) \binom {n} {m} (mn) 是从 n n n 个互不相同的元素中取 m m m 个元素的方案数,具体计算方案如下:

( n m ) = n ! m ! ( n − m ) ! = n × ( n − 1 ) × ⋯ × 2 × 1 ( m × ( m − 1 ) ⋯ × 2 × 1 ) ( ( n − m ) × ( n − m − 1 ) × ⋯ × 2 × 1 ) \binom {n}{m}=\frac{n!}{m!(n-m)!}=\frac{n \times (n-1) \times \cdots \times 2 \times 1}{(m \times (m-1) \cdots \times 2 \times 1)((n-m)\times(n-m-1)\times \cdots \times 2 \times 1)} (mn)=m!(nm)!n!=(m×(m1)×2×1)((nm)×(nm1)××2×1)n×(n1)××2×1

这里要特别注意,因为我们只考虑不上升子序列,所以在求组合数的过程中,一定满足 n ≥ m n \geq m nm ,也就是 ( a b i − 1 a b i ) \binom {a_{b_{i-1}}}{a_{b_i}} (abiabi1)中一定有 a b i − 1 ≥ a b i a_{b_{i-1}} \geq a_{b_i} abi1abi

我们在这里强调取模 x m o d &ThinSpace;&ThinSpace; y x \mod y xmody 的定义:

x m o d &ThinSpace;&ThinSpace; y = x − ⌊ x y ⌋ × y x \mod y = x -\left \lfloor \frac{x}{y} \right \rfloor \times y xmody=xyx×y

其中 ⌊ n ⌋ \left \lfloor n \right \rfloor n 表示小于等于 n n n 的最大整数。

x m o d &ThinSpace;&ThinSpace; 2 &gt; 0 x \mod 2 &gt; 0 xmod2>0 ,就是在说 x x x 是奇数。

与此同时,经验告诉我们一个长度为 n n n 的序列,子序列个数有 O ( 2 n ) O(2^n) O(2n) 个,所以我们通过对答案取模来避免输出过大。

B 君觉得 G 君说的十分有道理,于是再次强调了这些基本概念。

最后, G 君听说这个题是作为 gift 送给大家,她有一句忠告。

“Vorsicht, Gift!”

“小心. . . . . .剧毒! ”

输入输出格式

输入格式:

第一行一个整数 n n n

接下来 n n n 行,每行一个整数,这 n n n 行中的第 i i i 行,表示 a i a_i ai

输出格式:

一行一个整数表示答案。

输入输出样例

输入样例#1:
4
15
7
3
1
输出样例#1:
11

说明

• 对于前 10% 的测试点, n ≤ 9 , 1 ≤ a i ≤ 13 n ≤ 9, 1 ≤ a_i ≤ 13 n9,1ai13

• 对于前 20% 的测试点, n ≤ 17 , 1 ≤ a i ≤ 20 n ≤ 17, 1 ≤ a_i ≤ 20 n17,1ai20

• 对于前 40% 的测试点, n ≤ 1911 , 1 ≤ a i ≤ 4000 n ≤ 1911, 1 ≤ a_i ≤ 4000 n1911,1ai4000

• 对于前 70% 的测试点, n ≤ 2017 n ≤ 2017 n2017

• 对于前 85% 的测试点, n ≤ 100084 n ≤ 100084 n100084

• 对于 100% 的测试点, 1 ≤ n ≤ 211985 , 1 ≤ a i ≤ 233333 1 ≤ n ≤ 211985, 1 ≤ a_i ≤ 233333 1n211985,1ai233333。所有的 a i a_i ai 互不相同,也就是说不存在 i , j i, j i,j 同时满足 1 ≤ i &lt; j ≤ n 1 ≤ i &lt; j ≤ n 1i<jn a i = a j a_i = a_j ai=aj

解题分析

因为 2 2 2是质数, 所以根据 L u c a s Lucas Lucas定理我们可以发现
( n m ) = ( n   m o d   2 m   m o d   2 ) × ( ⌊ n 2 ⌋ ⌊ m 2 ⌋ ) ( m o d   2 ) \binom{n}{m}=\binom{n\ mod\ 2}{m\ mod\ 2}\times \binom{\lfloor \frac{n}{2}\rfloor}{\lfloor\frac{m}{2}\rfloor} (mod\ 2) (mn)=(m mod 2n mod 2)×(2m2n)(mod 2)
实质上就是 ( n   a n d   m ) = m (n\ and\ m)=m (n and m)=m的意思。

所以我们可以从后向前枚举每个数以及满足条件的 m m m(这个直接每次减一再 a n d   n and\ n and n就好了), 暴力 D P DP DP转移即可。

但是似乎复杂度看起来很爆炸?

p = l o g ( n ) p=log(n) p=log(n), 那么实际上二进制下 1 1 1的个数最多就有 p p p个, 我们计算的次数就是:
( p 0 ) ( p − 0 ) + ( p 1 ) ( p − 1 ) + ⋯ + ( p p − 1 ) ( 1 ) + ( p p ) ( 0 ) = ∑ i = 1 p 2 ( p i ) × p = n l o g ( n ) 2 \binom{p}{0}(p-0)+\binom{p}{1}(p-1)+\cdots+\binom{p}{p-1}(1)+\binom{p}{p}(0) \\ =\sum_{i=1}^{\frac{p}{2}}\binom{p}{i}\times p \\ =\frac{nlog(n)}{2} (0p)(p0)+(1p)(p1)++(p1p)(1)+(pp)(0)=i=12p(ip)×p=2nlog(n)
所以总复杂度是科学的…

代码如下:

#include <cstdio>
#include <cctype>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define ll long long
#define MX 300050
#define MOD 1000000007ll
template <class T>
IN void in(T &x)
{
	x = 0; R char c = gc;
	for (; !isdigit(c); c = gc);
	for (;  isdigit(c); c = gc)
	x = (x << 1) + (x << 3) + c - 48;
}
template <class T>
IN void mod(T &x, const T &y)
{x += y; if(x > MOD) x -= MOD;}
int dat[MX], dp[MX];
int n, now, ans;
int main(void)
{
	in(n);
	for (R int i = 1; i <= n; ++i) in(dat[i]);
	for (R int i = n; i; --i)
	{
		for (now = dat[i]; now; now = (now - 1) & dat[i])
		mod(dp[dat[i]], dp[now]);
		mod(ans, dp[dat[i]]);
		mod(dp[dat[i]], 1);
	}
	printf("%d", ans);
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值