【BZOJ4903】【CTSC2017】吉夫特 [DP]

吉夫特

Time Limit: 15 Sec  Memory Limit: 512 MB
[Submit][Status][Discuss]

Description

  

Input

  第一行一个整数n。
  接下来n行,每行一个整数,这n行中的第i行,表示ai。

Output

    一行一个整数表示答案。

Sample Input

  4
  15
  7
  3
  1

Sample Output

  11

HINT

  

Main idea

  给定一个序列,问有多少个子序列满足相邻的数构成的组合数都为奇数。

Solution

  首先我们用Lucas定理推一推可以知道:C(n,m)为奇数当且仅当n&m=m

  有了这个定理就好办了,我们可以显然地想到DP:通过枚举数在二进制下的子集转移,这样保证了可以转移过去。

  由于序列每个数都不同,且最大值为233333,所以效率是O(3^18)的。

Code

 1 #include<iostream>    
 2 #include<string>    
 3 #include<algorithm>    
 4 #include<cstdio>    
 5 #include<cstring>    
 6 #include<cstdlib>
 7 #include<cmath>
 8 using namespace std;  
 9  
10 const int ONE = 300005;
11 const int MOD = 1e9+7;
12  
13 int n,x;
14 int f[ONE];
15 int Ans;
16  
17 int get()
18 {    
19         int res=1,Q=1;char c;    
20         while( (c=getchar())<48 || c>57 ) 
21         if(c=='-')Q=-1; 
22         res=c-48;     
23         while( (c=getchar())>=48 && c<=57 )    
24         res=res*10+c-48;    
25         return res*Q;
26 }
27  
28 int main()  
29 {
30         n = get();
31         for(int i=1; i<=n; i++)
32         {
33             x = get();
34             int record = (f[x] + 1) % MOD;
35             for(int sub=x; sub; sub=(sub-1) & x)
36                 f[sub] = (f[sub] + record) % MOD;
37             Ans = (Ans + record) % MOD; 
38         }
39         printf("%d", Ans-n);
40 }
View Code

 

转载于:https://www.cnblogs.com/BearChild/p/6908346.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值