显然可以用LCT维护kruskal重构树。或者启发式合并维护kruskal重构树的倍增数组虽然多了个log也不一定比LCT慢吧。
当然这里的kruskal重构树几乎只是把树上的边权换成了点权,并不重要。
我们要查询的是树上两点间路径边权最大值。显然要并查集按秩合并一波。然后……并查集的树高就是log啊?维护个鬼的倍增数组啊直接暴力啊?
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 500010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,lastans,fa[N],len[N],deep[N]; bool flag[N]; int find(int x){return fa[x]==x?x:find(fa[x]);} void merge(int x,int y,int i) { int p=find(x),q=find(y); if (p!=q) { if (deep[p]<deep[q]) swap(p,q); fa[q]=p;if (deep[p]==deep[q]) deep[p]++; len[q]=i; } } int query(int x,int y) { int p=find(x),q=find(y); if (p!=q) return 0; int u=x;while (fa[u]!=u) flag[u]=1,u=fa[u];flag[u]=1; int ans=0; while (!flag[y]) ans=max(ans,len[y]),y=fa[y]; u=x;while (u!=y) ans=max(ans,len[u]),flag[u]=0,u=fa[u]; while (fa[u]!=u) flag[u]=0,u=fa[u];flag[u]=0; return ans; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj4668.in","r",stdin); freopen("bzoj4668.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif n=read(),m=read(); for (int i=1;i<=n;i++) fa[i]=i,deep[i]=1; int cnt=0; while (m--) { int op=read(); if (op==0) { int x=read()^lastans,y=read()^lastans; merge(x,y,++cnt); } else { int x=read()^lastans,y=read()^lastans; printf("%d\n",lastans=query(x,y)); } } return 0; }