Queue 应用——拓扑排序

1. 拓扑排序

题目描述:对一个有向无环图(Directed Acyclic Graph, DAG)G进行拓扑排序,是将G中所有顶点排成线性序列,是的图中任意一堆顶点u和v,若边(u, v)在E(G)中,则u在线性序列中出现在v之前。

如:

 

 

分析:

1)首先我们要将图G存入一个邻接矩阵中,保存该图;

2)计算每个顶点的入度,存储一个一维数组中;

3)从有向图中选择一个没有前驱(即入度为0)的节点并输出;

4)从图中删除该节点,并且删除从该节点发出的全部有向边;

5)重复上面两个步骤,直至剩余的图中不再存在没有前驱的节点为止。

进一步思考:

1)拓扑排序的本质是不断输出入度为0的点,这种方法可以用于判断图中是否有环;

2)拓扑排序其实给出的是节点之间的偏序关系; 

 

 

Answer:

class TopologySort {
    private int[][] aja = {{0,1,0,0,0,1,1,0,0,0,0,0,0},
                 {0,0,0,0,0,0,0,0,0,0,0,0,0},
              {1,0,0,1,0,0,0,0,0,0,0,0,0},
              {0,0,0,0,0,1,0,0,0,0,0,0,0},
              {0,0,0,0,0,0,0,0,0,0,0,0,0},
              {0,0,0,0,1,0,0,0,0,0,0,0,0},
              {0,0,0,0,1,0,0,0,0,1,0,0,0},
              {0,0,0,0,0,0,1,0,0,0,0,0,0},
              {0,0,0,0,0,0,0,1,0,0,0,0,0},
              {0,0,0,0,0,0,0,0,0,0,1,1,1},
              {0,0,0,0,0,0,0,0,0,0,0,0,0},
              {0,0,0,0,0,0,0,0,0,0,0,0,1},
              {0,0,0,0,0,0,0,0,0,0,0,0,0}};
    
    public int[][] getEdge() {
        return aja;
    }
    
    
    /**
     * 该函数根据邻接矩阵计算每个节点的入度
     * @param edge
     * @return
     */
    public int[] getInDegree(int[][] edge) {
        int len = edge.length;
        int[] inDegree = new int[len];
        for(int j=0; j<len; j++) {
            int count = 0;
            for(int i=0; i<len; i++) 
                if(edge[i][j] == 1)
                    count++;
            inDegree[j] = count;
        }
        return inDegree;
    }
              
    public List<Integer> topoSort(int[][] edge) {
        List<Integer> res = new ArrayList<Integer>();
        int len = edge.length;
        int[] inDegree = getInDegree(edge);
        
        Queue<Integer> q = new LinkedList<Integer>();
        //将入度为0的节点压入队列中
        for(int i=0; i<inDegree.length; i++) 
            if(inDegree[i] == 0) {
                q.add(i);
                res.add(i);
            }
        
        //对于队列中的元素(入度为0的元素)
        while(!q.isEmpty()) {
            int element = q.remove();
            for(int j=0; j<len; j++) {
                if(edge[element][j] == 1)  {
                    inDegree[j]--;
                    if(inDegree[j] == 0) {
                        q.add(j);
                        res.add(j);
                    }
                }
            }
        }
        return res;
    }
}

 

转载于:https://www.cnblogs.com/little-YTMM/p/5448442.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值