python参数寻优_荐模型选择与参数寻优

本文介绍了如何使用`reduce_mem_usage`函数优化DataFrame内存占用,通过调整数据类型减少内存消耗。此外,文章还探讨了线性模型的权重排序、标签的log变换、交叉验证的概念,并展示了绘制学习曲线和准确率曲线的方法。最后,文章讨论了贪心算法、网格搜索和贝叶斯调参在模型参数优化中的应用。
摘要由CSDN通过智能技术生成

一、解决数据量大, 读取操作数据慢的问题

reduce_mem_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间, 在未调整之前, 特征的数据类型固定为int16, float32, object, datetime等类型, 而有些特征不需要16位或32位来存储, 对每一列特征进行区间判断, 分配合适的存储单元, 有效降低内存占用空间.(提高内存使用率, 降低效率)

def reduce_mem_usage(df):

""" iterate through all the columns of a dataframe and modify the data type

to reduce memory usage.

"""

start_mem = df.memory_usage().sum()

print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))

for col in df.columns:

col_type = df[col].dtype

if col_type != object:

c_min = df[col].min()

c_max = df[col].max()

if str(col_type)[:3] == 'int':

if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:

df[col] = df[col].astype(np.int8)

elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:

df[col] = df[col].astype(np.int16)

elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:

df[col] = df[col].astype(np.int32)

elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:

df[col] = df[col].astype(np.int64)

else:

if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:

df[col] = df[col].astype(np.float16)

elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:

df[col] = df[col].astype(np.float32)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值