每天五分钟机器学习:交叉验证超参数寻优的python实现(附代码)

本文重点

前面我们介绍了k折交叉验证的原理,本文我们进行实践,来看一下通过k折交叉验证完成超参数学习率的调节。本文我们使用xgboost来完成文本分类的任务,但是使用xgboost的时候需要指定学习率,那么此时我们就需要完成学习率的调参工作,究竟哪个学习率最合适呢?

学习率的确定

本文我们设置如下所示的学习率,那么究竟哪个学习率最合适呢?

learning_rate=[0.001,0.001,0.01,0.1,0.3,0.9]

下面我们使用交叉验证方式确定究竟哪个超参数才是最好的

首先我们先导入我们所需要的python库,如下所示:

from sklearn.model_selection import StratifiedKFold

from sklearn.model_selection import GridSearchCV

这两个库一个是k折交叉验证,一个是调参利器网格搜索,我们二者结合就可以快速找到最佳的超参数学习率

部分代码

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

learning_rate=[0.001,0.001,0.01,0.1,0.3,0.9]

param_grid=dict(learning_rate=learning_rate)

model=XGBClassifier()

kfold=Stratified

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 我不是很了解麻雀算法,但我可以提供一些有关python代码实现超参数优化机器学习模型的参考资料: 1. Scikit-learn库中的GridSearchCV函数:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html 2. scikit-optimize库中的BayesianOptimization函数:https://scikit-optimize.github.io/#skopt.BayesSearchCV 3. Hyperopt库中的fmin函数:https://github.com/hyperopt/hyperopt/wiki/FMin ### 回答2: 麻雀算法(Sparrow algorithm)是一种优化算法,通过模拟麻雀觅食找到最优解。在机器学习中,可以使用麻雀算法来优化模型的超参数选择。 首先,我们需要定义一个适应度函数,用于评估模型的性能。例如,可以使用交叉验证准确率作为适应度函数。 接下来,我们可以使用以下代码实现麻雀算法优化机器学习模型的超参数: ```python import random # 定义适应度函数 def fitness(params): # 使用给定的超参数训练和评估模型,返回交叉验证准确率 # 这里假设使用params来训练模型,然后返回准确率 return accuracy def sparrow_algorithm(): # 初始化参数空间 params = initialize_params() best_fitness = fitness(params) # 初始化最佳适应度为当前适应度 best_params = params # 将当前参数设置为最佳参数 # 定义麻雀算法的迭代次数和麻雀群体大小 max_iterations = 100 num_sparrows = 10 for _ in range(max_iterations): for _ in range(num_sparrows): # 随机调整超参数,生成新的参数 new_params = adjust_params(params) new_fitness = fitness(new_params) # 判断新的适应度是否比最佳适应度更好 if new_fitness > best_fitness: best_fitness = new_fitness best_params = new_params # 更新参数空间为最佳参数 params = best_params return best_params # 初始化参数空间 def initialize_params(): # 返回一个初始化的超参数空间,例如一组初始的学习率、隐藏层大小等超参数 return params # 随机调整超参数 def adjust_params(params): # 在超参数空间内随机调整超参数的值,生成新的参数 return new_params # 测试麻雀算法 best_params = sparrow_algorithm() print("Best parameters: ", best_params) ``` 以上代码演示了如何使用麻雀算法优化机器学习模型的超参数选择。在实际应用中,您需要根据具体的机器学习模型和超参数空间进行适当的调整。 ### 回答3: 麻雀算法是一种群体智能算法,可以用于优化机器学习模型的超参数。下面是用Python代码实现麻雀算法优化机器学习模型的超参数的示例: ```python import random # 定义麻雀类 class Sparrow: def __init__(self, position): self.position = position self.velocity = [0] * len(position) self.best_position = position self.best_fitness = float('inf') def update_velocity(self, global_best_position, omega, alpha, beta): for i in range(len(self.position)): r1 = random.random() r2 = random.random() cognitive_velocity = alpha * r1 * (self.best_position[i] - self.position[i]) social_velocity = beta * r2 * (global_best_position[i] - self.position[i]) self.velocity[i] = omega * self.velocity[i] + cognitive_velocity + social_velocity def update_position(self, lower_bound, upper_bound): for i in range(len(self.position)): self.position[i] += self.velocity[i] # 边界处理 if self.position[i] < lower_bound: self.position[i] = lower_bound if self.position[i] > upper_bound: self.position[i] = upper_bound def calculate_fitness(self, fitness_function): fitness = fitness_function(self.position) if fitness < self.best_fitness: self.best_fitness = fitness self.best_position = self.position # 定义麻雀算法类 class SparrowAlgorithm: def __init__(self, num_sparrows, num_iterations, fitness_function, lower_bound, upper_bound, omega, alpha, beta): self.num_sparrows = num_sparrows self.num_iterations = num_iterations self.fitness_function = fitness_function self.lower_bound = lower_bound self.upper_bound = upper_bound self.omega = omega self.alpha = alpha self.beta = beta self.sparrows = [] self.global_best_position = None self.global_best_fitness = float('inf') def optimize(self): # 初始化麻雀群体 for _ in range(self.num_sparrows): position = [random.uniform(self.lower_bound, self.upper_bound) for _ in range(len(self.lower_bound))] sparrow = Sparrow(position) self.sparrows.append(sparrow) # 迭代优化 for _ in range(self.num_iterations): for sparrow in self.sparrows: sparrow.calculate_fitness(self.fitness_function) if sparrow.best_fitness < self.global_best_fitness: self.global_best_fitness = sparrow.best_fitness self.global_best_position = sparrow.best_position for sparrow in self.sparrows: sparrow.update_velocity(self.global_best_position, self.omega, self.alpha, self.beta) sparrow.update_position(self.lower_bound, self.upper_bound) return self.global_best_position ``` 你可以根据实际需求,自定义目标函数(fitness_function)以及其他参数,例如种群数量(num_sparrows)、迭代次数(num_iterations)、位置范围(lower_bound和upper_bound)等。在optimize方法返回的结果中,即可获得优化后的超参数值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值