微分方程matlab绘图,Matlab学习——求解微分方程(组)

本文详细介绍了如何在Matlab中使用dsolve函数求解常微分方程(组),包括精确解和数值解的方法,如ode45等。此外,还展示了如何利用Euler折线法求解数值解,并简单提及了Matlab解决偏微分方程的pdepe函数和PDE工具箱的应用。
摘要由CSDN通过智能技术生成

Matlab学习——求解微分方程(组)

发布时间:2018-05-29 17:18,

浏览次数:738

, 标签:

Matlab

介绍:

1.在 Matlab 中,用大写字母 D 表示导数,Dy 表示 y 关于自变量的一阶导数,D2y 表示 y 关于自变量的二阶导数,依此类推.函数

dsolve 用来解决常微分方程(组)的求解问题,调用格式为

X=dsolve(‘eqn1’,’eqn2’,…)

如果没有初始条件,则求出通解,如果有初始条件,则求出特解

系统缺省的自变量为 t。

2.函数 dsolve

求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB

具有丰富的函数,将其统称为 solver,其一般格式为:

[T,Y]=solver(odefun,tspan,y0)

说明:(1)solver 为命令 ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i 之一.

(2)odefun 是显示微分方程 y '  = f (t , y) 在积分区间 tspan = [t 0 , t f ] 上从 t0 到 t f

用初始条件 y0 求解.

(3)如果要获得微分方程问题在其他指定时间点 t 0 , t1 , t 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值