Matlab学习——求解微分方程(组)
发布时间:2018-05-29 17:18,
浏览次数:738
, 标签:
Matlab
介绍:
1.在 Matlab 中,用大写字母 D 表示导数,Dy 表示 y 关于自变量的一阶导数,D2y 表示 y 关于自变量的二阶导数,依此类推.函数
dsolve 用来解决常微分方程(组)的求解问题,调用格式为
X=dsolve(‘eqn1’,’eqn2’,…)
如果没有初始条件,则求出通解,如果有初始条件,则求出特解
系统缺省的自变量为 t。
2.函数 dsolve
求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB
具有丰富的函数,将其统称为 solver,其一般格式为:
[T,Y]=solver(odefun,tspan,y0)
说明:(1)solver 为命令 ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i 之一.
(2)odefun 是显示微分方程 y ' = f (t , y) 在积分区间 tspan = [t 0 , t f ] 上从 t0 到 t f
用初始条件 y0 求解.
(3)如果要获得微分方程问题在其他指定时间点 t 0 , t1 , t