关于商流形的注记

熟知微分流形中子流形的定义。一个不难被提出的简单的问题是

问题 对微分流形$M$,何种等价关系$\sim$可以使得商拓扑空间$M/\sim$具有微分流形的结构,使得自然映射$M\to M/\sim$是光滑的?

这个问题在微分流形的标准教材上处于避而不谈的地位。不过如下这个结论不过是微分流形的习题。回忆『嵌入子流形的结构是唯一』的这一性质(4.54),『浸入商流形』也有类似的性质。

命题 对微分流形$M$,等价关系$\sim$,$M/\sim$至多只有一种微分结构使得自然映射$M\stackrel{\pi}\to M/\sim$是淹没。

证明 我们可以证明淹没具有『泛性质』。任何满射$M/\sim \stackrel{\varphi}\to A$,则$\varphi$光滑当且仅当$\varphi\circ \pi$光滑(4.47)。于是微分结构就被确定了。

具体来说,可以在局部选择$x,\pi(x),\varphi(\pi(x))$可以选择坐标卡,从而局部上可以将$M/\sim$『提升』回到$M$。根据反函数定理,淹没是开映射,所以可以选择$x$的坐标卡$U$和$\varphi(\pi(x))$的坐标卡$V$使得$\varphi(\pi(U))\subseteq V$,再选择$\pi(x)$坐标卡$W\subseteq\pi(U)$,即可。$\square$

另一件事是关于Hausdorff性的少见习题

命题 对拓扑空间$X$,等价关系$\sim$,则商拓扑$X/\sim$是Hausdorff的当且仅当$\sim\subseteq X\times X$是闭集。

证明 $X/\sim$是Hausdorff的$\iff$任意两个$x\textrm{不}\sim y$存在开集$U,V$满足$x\in U,y\in V$使得$$\forall u\in U,v\in V, u\textrm{不}\sim v$$$\iff$$(x,y)\notin \sim$存在含$x,y$的开集$U\times V$使得$U\times V\cap \sim=\varnothing$$\iff$$\sim\subseteq X\times X$是闭集. $\square$

一个流行的构造商流形的方法就是利用Lie群作用

定义 对于微分流形$M$,Lie群$G$,$G$作用在$M$上被称为是

  • 光滑的,如果$G\times M\to M$是光滑的。
  • 真的(proper),如果映射$G\times M\ni (g,p)\mapsto (gp,p)\in M\times M$满足紧致集的原像还是紧致的。
  • 自由的,只有$1\in G$有不动点。

商流形定理 假如Lie群$G$光滑,自由,真的作用在微分流形$M$上,那么轨道空间$M/G$具有唯一的$\dim M-\dim G$维微分流形的结构使得自然映射$M\stackrel{\pi}\to M/G$是淹没。

证明梗概 首先可以证明每一条轨道都是一个闭集,且$G\to Gp\subseteq M$是嵌入子流形,

  • 首先$G\to Gp\subseteq M$也满足紧致集的原像还是紧致的。
  • 紧致集的原像还是紧致的连续映射一定是闭映射。任意选择极限点,选取逐渐缩小的紧致邻域,考虑原像必定有交,从而极限点一点在像中。
  • 单射是因为自由作用,从而每一点都是浸入。
  • 因为闭映射从而是嵌入。

我们需要对每个点找一个坐标$(x,y)$使得前几位$(x,0)$将落在轨道上,而后几位$(0,y)$与每条轨道只交于至多一个点,就像是『垂直所有轨道』一样。

  • 先将每一点分解成两部分,第一部分是轨道的切空间,得到一个满足Frobenius条件的分布。
  • 利用Frobenius定理得到坐标卡,此时前几位的条件已经满足,后几位最多与某条轨道交可数个点。
  • 通过缩小这个坐标卡,如果始终不能做到只有一个交点,那么存在$p_i\neq p_i'\in M$和$g_i\in G$使得$g_i p_i=p_i'$,可取$g_i$的收敛子列,发现迫使$g=1$。
  • 注意到$G\times \{(0,y)\}\to M$在$(1,0)$附近是平展(即切映射可逆),上述情况是不可能发生的。

下面开始论证$M$是微分流形

  • 注意根据上面的论证此时轨道空间是Hausdorff的。
  • 不难验证是第二可数的。
  • 对于点$pG$,取$p$的坐标卡$(x,y)$满足上面的条件,然后,取坐标卡$y$即可满足条件,这是良定义的。
  • 微分结构不难验证,因为$y$原本就是相容的。

命题得证。$\square$

商流形定理完整的证明可见Lee Introduction to smooth manifold. Page 544 Theorem 21.10. 一个有用的推论是如下的离散群作用。

定理 当群$G$是离散时(即$0$维Lie群),$G$在微分流形$M$上的作用是光滑,自由,真的当且仅当

  • 对每一个$g\in G$,$g:M\to M$是光滑的。
  • 每一个点$p\in M$,都存在领域$U$使得$gU\cap U=\varnothing$, 对所有$g\neq 1$。这在拓扑学家的口中称为真不连续(properly discontinuous)
  • 对任意两个不在同一条轨道上的点$p,q\in M$,存在$p$的邻域$U$,$q$的邻域$V$使得$gV\cap U=\varnothing$,对所有$g\in G$。

证明同样见Lee Introduction to smooth manifold. Page 548 Lemma 21.11. 

实际上,可以给出等价的刻画,这被称为Godement判据。

Godement定理 对微分流形$M$,等价关系$\sim$,则下列条件是等价的

  • $M/\sim$具有微分流形的结构使得$M\stackrel{\pi}\to M/\sim$是淹没。
  • $\sim\subseteq M\times M$是闭嵌入子流形且投射$\sim\to M$是淹没。

证明梗概 第一条推第二条比较容易,考虑如下交换图$$\begin{array}{ccc}\sim & \to & M \\ \downarrow && \downarrow \\ M & \to & M/\sim \end{array}$$左上两箭头是投射。注意到$\sim$是$X\times X\to X/R$的原像,因为常秩,其具有自然的嵌入子流形结构。计算切空间知$\sim$的切空间是$\ker [\mathsf{Tan}M\times \mathsf{Tan}M\to \mathsf{Tan}M/\sim]$,不难发现投射是淹没。

反之,证明分很多步。对于$U\subseteq M$,记$\sim_U=\sim \cap (U\times U)$。称$U$是饱和的如果$\pi^{-1}(\pi(U))=U$。

首先,如果$M=\bigcup U_i$,每个$U_i$都是饱和的,如果$U_i/\sim_{U_i}$都是流形,则$M/\sim$是流形。

  • 每个$\pi(U_i)=U_i/\sim_{U_i}$都是开集,且$M/\sim=\bigcup U_i/\sim_{U_i}$。
  • 因为此时$(U_i\cap U_j)/\sim_{U_i\cap U_j}$的流形结构是一样的。
  • 综之,可以将流形结构粘粘。

对于开集$U\subseteq M$,如果$\pi(U)=M/\sim$,且$U/\sim_U$是流形,则$M/\sim$是流形。

  •  此时$U/\sim_U=M/\sim$,故我们要说明$M\to U/\sim_U$是淹没即可。
  • 考虑如下交换图$$\begin{array}{ccc}\sim\cap(M\times U) & \to & M \\ \downarrow && \downarrow \\ U & \to &U/\sim_U \end{array}$$计算切空间立刻知$M\to U/\sim_U$是淹没。

综合上述两条结果我们可以得到:如果$M=\bigcup U_i$,每个$U_i/\sim_{U_i}$都是流形,则$M/\sim$是流形。这样,问题就局部化了。在局部上我们证明存在满足条件的坐标卡$(x,y)$使得$(x,y)\sim (0,y)\iff x=0$,这样$y$就给出商集局部上的坐标卡。

  • 实际上$p$所在的等价类是$\sim \cap X\times \{p\}$,考虑子空间$X=\{X\in \mathsf{Tan}_p(M): (X,0)\in\mathsf{Tan}_{p,p}(\sim) \}$,这定义了一个满足Frobenius条件的分布。
  • 利用Frobenius定理得到坐标卡$(x,y)$,我们断言可以缩小坐标卡使得$(x,y)\sim (0,y)\iff x=0$。
  • 这是因为投射$(\{y=0\}\times M)\cap \sim \to M$在$(p,p)$附近是平展(即切映射可逆)。

 综上命题得证。$\square$

以上证明摘自Serre Lie algebras and Lie groups Page 92 Theorem 2. 

商流形经典的例子莫过于射影空间。

例子  不难发现$\mathbb{R}\setminus \{0\}$在$\mathbb{R}^{n+1}\setminus \{0\}$的数乘作用满足商流形定理的条件。如果从Godement定理的角度看,就是要验证$\{(x,\lambda x): x\in \mathbb{R}^{n+1}\setminus\{0\}, \lambda\in \mathbb{R}\}$是否是嵌入子流形,$(x,\lambda)\mapsto x$是否是淹没,这都是平凡的。

 另一个例子来自Lie群,熟知Lie群$G$,闭Lie子群$H$,则陪集空间$G/H$(几何学家称之为齐次空间)上有自然的微分流形结构。

例子 对于Lie群$G$,闭Lie子群$H$,$H$在$G$上的作用满足商流形定理的条件。如果从Godement定理的角度看则更为技术化。

另一个需要介绍的概念是纤维丛

定义 一个拓扑空间$X$上以$F$为纤维的纤维丛(Fiber Bundle)$E$是一个满射$\pi: E\to X$使得任何一点$x\in X$存在开领域$U$使得和自然的同胚$\Phi: \pi^{-1}(U)\to U\times F$。其中$\Phi$需要满足$\left[\pi^{-1}(U)\stackrel{\Phi}\to U\times F\stackrel{\textrm{投射}}\to U\right]=\left[\pi^{-1}(U)\stackrel{\pi}\to U\right]$。

实际上根据商流形定理的证明过程,$M$是$M/G$上以$G$为纤维的纤维丛。而Godement定理的过程则是给每点粘附不同的『纤维』,从其过程中可以看出,这是商流形定理的推广。

转载于:https://www.cnblogs.com/XiongRuiMath/p/9994152.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值