I'm trying to calculate a 3d sobel filter in python. I have a pretty good code for 2d image which is below.
btw. my original image is uint8 type.
preSobel = preSobel.astype('int32')
dx = ndimage.sobel(preSobel, 0) # horizontal derivative
dy = ndimage.sobel(preSobel, 1) # vertical derivative
mag = numpy.hypot(dx, dy) # magnitude
mag *= 255.0 / numpy.max(mag) # normalize (Q&D)
img[i,:,:]=mag
but from my understanding of the wiki page for calculating 2d, i should have multiplied the 1d sobel results rather than hypot :confused
anyway, to go to 3d, I guess I need to calculate 1d sobel on each axis and then multiply all but I'm not sure... Is there any library out there that calculates 3d sobel faster ?
解决方案
First, in reference to your wikipedia link: The multiplication there is referring to the way to construct the sobel convolution kernel, not the end result.
For a 2D sobel filter you need a kernel to get the derivate in x direction, and another kernel to get the derivate in Y direction, e.g.
This is essentially what your two commands do, so if you are using numpy you do not need to construct these kernels yourself.
dx = ndimage.sobel(preSobel, 0) # horizontal derivative
dy = ndimage.sobel(preSobel, 1) # vertical derivative
Now for the 3D case you need 3 operations with 3 kernels, one for dx, dy, dz.
The linked wiki section is telling you how to construct the kernels by multiplying components. The finished sobel kernel for dZ for example is a 3x3x3 matrix that looks like this:
To get the magnitude you still have to take the square root of the squared derivatives (the hypotenuse) afterwards.
I do not have numpy but as far as I can tell from the documentation the ndimage sobel command can deal with any number of dimensions, so again, the kernels are already provided:
dx = ndimage.sobel(your3Dmatrix, 0) # x derivative
dy = ndimage.sobel(your3Dmatrix, 1) # y derivative
dz = ndimage.sobel(your3Dmatrix, 2) # z derivative
now the hypotenuse command probably only take 2 parameters, so you will have to find another way to efficiently calculate mag = sqrt(dxdx + dydy + dz*dz) .
But NumPy should have everything you need for that.
Update
Actually, if you are only interested in the magnitude anyway, there is a complete function in numpy for this:
mag = generic_gradient_magnitude(your3Dmatrix, sobel)