sobel 算子

Sobel算子是常用的边缘检测工具,由一对3x3的卷积核构成,分别用于计算图像的水平和垂直亮度差分。通过对图像进行卷积操作,Sobel算子可以检测出图像的横向和纵向边缘,同时在计算法线偏移时也有应用。卷积过程中通常会伴随核的翻转,但Sobel算子无需翻转。处理后,常使用池化操作减少冗余信息。
摘要由CSDN通过智能技术生成

常用于边缘检测,在粗精度下,是最常用的边缘检测算子。

sobel算子是由两个3x3的卷积核构成,分别用于计算中心像素邻域的灰度加权差。

分为垂直和水平方向的sobel滤波器GX  and  Gy

sobel卷子因子为:

 该算子包含两组3x3的矩阵,代表水平和垂直两个方向,将之与图像平面卷积,即可分别得出水平和垂直的亮度差分近似值。

A为原始图像,Gx,Gy分别代表水平和垂直

 sobel算子的主要用途:

边缘检测时:Gx用于检测纵向边缘,Gy用于检测横向边缘

计算法线时:Gx用于计算法线的横向偏移, Gy用于计算法线的纵向偏移

sobel算子应用时进行给定图像的卷积操作,卷积为计算图像大矩阵周围像素和滤波器矩阵对应位置元素的乘积, 然后把结果相加到一起, 最终得到的值就作为该像素的新值, 这样就完成了一次

卷积,之后继续移动卷积核,直到把大矩阵每个位置都运算完毕,因为相邻像素卷积结果一般具有相似输出,会产生大量冗余信息,一般为减少输出值会进行求取最大小值或者平均值的池化操作。

经sobel算子处理的图像(图像来源于网路,侵删)

 值得注意的是,一般卷积操作会伴随卷积核的翻转,而sobel却不需要翻转,因为绕中心点旋转180°,并不影响结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值