[cf557d]Vitaly and Cycle(黑白染色求奇环)

题目大意:给出一个 n 点 m 边的图,问最少加多少边使其能够存在奇环,加最少边的情况数有多少种。

解题关键:黑白染色求奇环,利用数量分析求解。

奇环:含有奇数个点的环。

二分图不存在奇环。反之亦成立。

 

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
const int maxn=1e5+5;
const int maxm=1e5+5;

int c[maxn];       //color,每个点的黑白属性,-1表示还没有标记,0/1表示黑白,比vis数组多一个作用
ll num[2];        //在一次DFS中的黑白点个数
bool f=0;          //判断是否出现奇环

int head[maxn],tot,n,m,a,b;
struct edge{
    int to;
    int nxt;
}e[2*maxm];
void add_edge(int u,int v){
    e[tot].to=v;
    e[tot].nxt=head[u];
    head[u]=tot++;
}
void init(){
    memset(head,-1,sizeof head);
    tot=0;
    memset(c,-1,sizeof c);
}

void dfs(int u,int x){
    if(f)return;
    c[u]=x;
    num[x]++;
    for(int i=head[u];~i;i=e[i].nxt){
        int j=e[i].to;
        if(c[j]==-1) dfs(j,!x);
        else if(c[j]==x){//存在奇环
            f=1;
            return;
        }
    }
}
int main(){
    init();
    cin>>n>>m;
    for(int i=1;i<=m;i++){
        cin>>a>>b;
        add_edge(a,b);
        add_edge(b,a);
    }
    ll ans=0,ans2=0;
    if(m==0){
        ans=(ll)n*(n-1)*(n-2)/6;
        printf("3 %lld\n",ans);
        return 0;
    }
    for(int i=1;i<=n&&(!f);i++){
        if(c[i]==-1){
            num[0]=num[1]=0;
            dfs(i,1);
            ans+=(num[0]*(num[0]-1)+num[1]*(num[1]-1))/2;
            if(num[0]==1&&num[1]==1){
                ans2+=n-2;
            }
        }
    }
    if(f) printf("0 1\n");
    else if(ans) printf("1 %lld\n",ans);
    else printf("2 %lld\n",ans2);
    return 0;
}

 

转载于:https://www.cnblogs.com/elpsycongroo/p/10356827.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值