caffe在solverstate的基础上继续训练模型

以mnist数据集为例:

bat训练脚本:

Build\x64\Release\caffe.exe train --solver=examples/mnist/lenet_solver.prototxt 
pause 

  

在这个模型的基础上,继续训练。

继续训练之前,也可以修改lenet_solver.prototxt中的学习率。

Build\x64\Release\caffe.exe train --solver=examples/mnist/lenet_solver.prototxt --snapshot=examples/mnist/lenet_iter_1000.solverstate
pause 

 训练从1000次iterations开始。

 

用Python脚本启动训练:

import caffe

caffe.set_device(int(0))
caffe.set_mode_gpu()

solver = caffe.SGDSolver('.\\examples\\mnist\\lenet_solver.prototxt')
solver.solve()

加载已训练的模型,只用加一句话

import caffe

caffe.set_device(int(0))
caffe.set_mode_gpu()

solver = caffe.SGDSolver('.\\examples\\mnist\\lenet_solver.prototxt')
solver.restore('examples\\mnist\\lenet_iter_5000.solverstate')
solver.solve()

 

转载于:https://www.cnblogs.com/k7k8k91/p/7798278.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值