https://www.kaggle.com/c/santander-value-prediction-challenge
在kaggle该题中,需要通过所给的匿名变量来预测target值
feature比较多,所以通过降维来查看训练集和测试集的分布情况
1.训练分类器划分测试集和训练集
我们把训练集的y设置成1,测试集的设置成0
通过feature训练一个分类器(我们当时采用了最简单的分类器逻辑回归),用于训练集和测试集的划分
通过改分类器我们可以得到样本是测试集的概率
(此处有问题:由于测试集较多,样本不平衡,产生误差)
2.partA:
基于测试集概率较高的来训练一个回归器A
3.partB:
基于测试集概率较低的来训练一个回归器B
4.计算结果
prediction = coeff*(partA) + (1-coeff)*partB
此处coeff = alpha*(Pr(is_test|X) + beta,且alpha和beta需要进行多次调试。