处理训练集和测试集分布同的方法(对抗训练)

https://www.kaggle.com/c/santander-value-prediction-challenge

在kaggle该题中,需要通过所给的匿名变量来预测target值

feature比较多,所以通过降维来查看训练集和测试集的分布情况

1.训练分类器划分测试集和训练集

我们把训练集的y设置成1,测试集的设置成0

通过feature训练一个分类器(我们当时采用了最简单的分类器逻辑回归),用于训练集和测试集的划分

通过改分类器我们可以得到样本是测试集的概率

(此处有问题:由于测试集较多,样本不平衡,产生误差)

2.partA:

基于测试集概率较高的来训练一个回归器A

3.partB:
基于测试集概率较低的来训练一个回归器B

4.计算结果

prediction = coeff*(partA) + (1-coeff)*partB

此处coeff = alpha*(Pr(is_test|X) + beta,且alpha和beta需要进行多次调试。

 

转载于:https://www.cnblogs.com/zhengzhe/p/9264759.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值