excel概率密度函数公式_正态分布基本概念及Excel实现

正态分布(也称为高斯分布)是统计中最常用的连续分布。正态分布在统计中至关重要,主要有以下三个原因:
  • 商业中常见的许多连续变量的分布与正态分布非常相似。

  • 正态分布可用于近似各种离散的概率分布。

  • 由于正态分布与中心极限定理之间的关系,因此正态分布为其提供了经典统计推断的基础。

正态分布由图经典钟形表示。在正态分布中,您可以计算值以一定范围或间隔出现的概率。但是,由于将连续变量的概率测量为曲线下的面积,因此来自连续分布(例如正态分布)的特定值的确切概率为零。例如,时间(以秒为单位)被测量并且不计数。因此,您可以确定网络浏览器上视频下载时间在7到10秒之间的概率,或者下载时间在8到9秒之间的概率,或者下载时间在7.99到90秒之间的概率。8.01秒。但是,下载时间恰好为8秒的概率为零。正态分布具有几个重要的理论特性
  • 它是对称的,因此其均值和中位数相等。

  • 外观为钟形。

  • 其四分位数间距等于1.33标准偏差。

    因此,中间值的50%包含在低于平均值的标准偏差的三分之二和高于平均值的标准偏差的三分之二的范围内。

  • 它具有无限范围(-oo

bbf076cce36f210c5bb0601aa23b8604.png

装满10,000瓶软饮料的量 实际上,许多变量的分布与正态分布的理论性质非常相似。表中的数据代表最近一天装满10.000升1升瓶中的软饮料量。感兴趣的连续变量,即软饮料的填充量,可以通过正态分布来近似。10,000瓶中的软饮料量的测量值在1.05至1.055升之间,并围绕该组对称分布,形成钟形图案。图显示了相对频率直方图和多边形,用于填充10,000个瓶子的数量分布。

f49cfa5952f6f19fc368f54b95049f97.png

10,000瓶软饮料中的相对频率直方图 对于这些数据,正态分布的前三个理论特性得到了近似满足。但是,第四范围不是无限的。装满瓶子的数量不能为零或小于0,也不能装满超出其容量的瓶子。从表中可以看到,每10,000个装满的瓶子中只有48个预期含有1.08

升或更高,并且相等的数字预计少于1.025升。

符号f(X)用于表示概率密度函数。正态分布的概率密度函数在公式中给出。

5a428b1116fcc83f7e54a11fbaf28800.png

e =用2.71828近似的数学常数

π=用3.14159近似的数学常数

μ =平均值

σ =标准偏差

X =连续变量的任何值,其中-∞

尽 管公式看起来很复杂,但由于e和是数学常数,所以随机变量X的概率仅取决 于正态分布的两个参数-平均值μ和标准偏差σ。 每次指定μ和σ的特定值时,都会生成不同的正态概率分布。 图说明了这一原理。

5c6a1bc8c672a1f1c7909672c2ffc7ea.png

标记为A和B的分布具有相同的平均值(μ),但具有不同的标准偏差。 分布A和C的标准偏差(σ)相同,但均值不同。 分布B和C对于μ和σ具有不同的值。 计算正态概率要计算正态概率,首先需要使用公式

be377ae03179a81b07fb7a1ff627df03.png

所示的转换公式将正态分布变量X转换为标准化正态变量Z。 应用此公式可让您在正态概率表中查找值,并避免了公式(1)可能需要的繁琐而复杂的计算。转换公式将计算出一个Z值,该值表示标准值单位中的x值与平均值u的差。变量X具有平均值u和标准偏差σ,而标准化变量Z始终具有平均值u = 0和标准偏差 σ = 1。然后,您可以使用表(累积标准化正态分布)来确定概率。例如,过去的数据表明下载视频的时间是正态分布的,平均时间为7秒,标准差为 σ = 2秒。从图中可以看到,

01920b7ed6949758430189f47c4f4fb6.png

每个度量X都有一个对应的标准化度量Z,它是根据公式(2)(转换公式)计算得出的。因此,9秒的下载时间等于平均数之上的1个标准单位(1个标准偏差),因为Z =(9-7) /2= 11秒的下载时间等于-3个标准化单位(3个标准差)低于均值,因为Z =(1-7)/2= -3在上图中,标准偏差是测量单位。换句话说,9秒的时间比7秒的平均时间高2秒(1个标准差)或更慢。同样,1秒的时间比平均时间低6秒(3个标准差)或更快。为进一步说明转换公式,假设另一个网站对于正态分布的视频具有下载时间,平均时间为= 4秒,标准偏差 = 1秒。下图显示了这种分布。

708f224c95e9011c3281e2e4f473d67e.png

将这些结果与MyTVLab网站的结果进行比较,您会发现5秒的下载时间比平均下载时间高出1个标准差,因为Z =(5-4)/1= +1

1秒的时间比平均下载时间低3个标准偏差,因为

Z = (1-4)/1= -3计算出Z值后,您可以使用累积标准化正态分布中的值表(查找正态概率。假设您想查找MyTVLab网站的下载时间少于9秒。假设平均u = 7秒,标准偏差σ = 2秒,则将X = 9转换为标准单位。导致Z值为+1.00使用此值,您可以使用表查找法线下的累积面积,该面积小于Z = +1.00(在其左侧)。要读取小于Z = +1.00的曲线下的概率或面积,请向下扫描表中的Z列,直到在1.0的Zrow中找到感兴趣的Z值(十分之一)。接下来,阅读该行,直到与包含Z值的第100位的列相交为止。因此,在表的主体中,Z = 1.00的概率对应于行Z = 1.0与列Z = .00的交集。下表显示了该交集。

dd8b10c119d8f82c93b775c6e6e102f9.png

在交叉点处列出的概率为0.8413,这意味着下载时间少于9秒的可能性为84.13%。下图以图形方式显示了这种可能性。

c01642bcff9e677cb9fc3e8e769d07cd.png

从累积标准化正态分布确定小于Z的面积

但是,对于其他网站,您看到5秒的时间比4秒的平均时间高1个标准化单位。因此,下载时间少于5秒的概率也为0.8413。下图显示,不管正态分布变量的均值u和标准偏差σ如何,公式(2)都可以将X值转换为Z值。

a36e8fa26036e6fab3effeb2946c27b9.png

演示两条法线下对应累积部分的比例转换

示例1

求P(X> 9)

MyTVLab网站的视频下载时间超过9秒的概率是多少?

解:下载时间少于9秒的概率为0.8413。因此,下载时间将超过9秒的概率是1-0.8413 = 0.1587。下图说明了此结果。

afb68fea09c600fb55982029a015d898.png

例2,

求P(X <7 or X> 9)

MyTVLab网站的视频下载时间少于7秒或超过9秒的概率是多少?

解:要找到此概率,您可以分别计算下载时间小于7秒的概率和下载时间大于9秒的概率,然后将这两个概率相加。下图说明了此结果。

2ecf9e877816b17fdb310da41bec008d.png

因为平均值是7秒,并且平均值等于正态分布中的中值,所以50%的下载时间在7秒以下。从例1中,您知道下载时间大于9秒的概率为0.1587。因此,下载时间低于7秒或超过9秒(P(X <7或X> 9))的概率为0.5000 + 0.1587 = 0.6587。

例3,

求P(5 

MyTVLab网站的视频下载时间在5到9秒之间(即P(5

解:在下图中,您可以看到感兴趣的区域位于两个值5和9之间。

199801caeef1470db7da72b491cf15c4.png

例3的结果使您可以声明,对于任何正态分布,这些值的68.26%将落在平均值的±1标准偏差之内。从下图中,您可以看到95.44%的值将落在平均值的±2标准偏差之内。因此,95.44%的下载时间在3到11秒之间。

669ce21c77c5a50df27bcdc3dd1f7d95.png

从下图中可以看到,该值的99.73%在平均值的上下3个标准偏差之内。

b11cd71f5e3f8a73f2d99ee9c31b2886.png

从而。99.73%的下载时间在1到13秒之间。因此,不太可能(0.0027,或10,000中只有27)下载时间太快或太慢,以至于不到1秒或超过13秒。通常,您可以使用6σ(即均值以下3个标准偏差到均值以上3个标准偏差)作为正态分布数据范围的实际近似值。对于任何正态分布的情况。

约68.26%的值落在平均值的±1标准偏差内

约95.44%的值落在平均值的±2标准偏差内

约99.73%的值落在平均值的±3标准偏差内

寻找X值示例1至3要求您使用正态分布表在正态曲线下查找与特定X值相对应的面积。对于其他情况,您可能需要执行相反的操作:查找对应于特定区域的X值。通常,您可以使用公式来查找X值。

f2923fe8e44103c1ae1f1d645746ec83.png

要找到与已知概率相关的特定值,请按照下列步骤操作:•绘制正态曲线,然后将平均值和X的值放在X和Z刻度上。•查找小于X的累积面积。•遮盖感兴趣的区域。•使用表,确定正态线下面积对应的Z值 曲线小于X。•使用公式求解X:

示例4

求出X值为0.10的累积概率。

MyTVLab视频的最快10%下载完成之前需要多少时间(以秒为单位)?

解:由于预计10%的视频将在X秒内下载,因此法线下小于该值的面积为0.1000。搜索面积或概率为0.1000。最接近的结果是0.1003,如表所示

e08431726e00aa80a1b4f5c61a4cf29c.png

在正态分布线下找到对应于特定累积面积(0.10)的Z值

从该区域到表格的页边空白,您发现与特定的Z行(-1.2)和Z列(.08)相对应的Z值为1.28(见图)。

512023e340d7be55f4c9d926cfb02910.png

找到Z后,即可使用公式确定X值。

替换u = 7、σ= 2和Z = -1.28,

X = u + Zσ

X = 7 +(-1.28)(2)= 4.44秒

因此,下载时间的10%为4.44秒或更短。

例5,查找包含95%下载时间的X值。

围绕平均值对称分布的X的下限值和上限值是多少,包括MyTVLab网站上视频的95%的下载时间?

解:首先,您需要找到X的较低值(称为XL)。然后,找到X的上限值(称为Xu),因为95%的值在XL和Xu之间,并且XL和XU与平均值均等距离,所以2.5%的值在XL之下(参见图)。

360c448e9353d8a9753a1ade2d851874.png

尽管X未知,但是您可以找到相应的Z值,因为曲线下的面积小于该Z的值为0.0250。使用表搜索概率0.0250。

e21829a1f58e0be03081bf71053a2b12.png

从表格的正文到表格的页边距,您看到与特定的Z行(-1.9)和Z列(.06)相对应的Z值为-1.96。

找到Z后,最后一步是使用公式,如下所示:

e505298abc08cd28d767621145967de2.png

您使用类似的过程来查找X。由于仅2.5%的视频下载时间长于Xu秒,因此97.5%的视频下载时间短于Xu秒。从正态分布的对称性中,您会发现所需的Z值(如图所示)为+1.96(因为Z位于标准化均值0的右侧)。您还可以从表中提取此Z值。您可以看到曲线下的面积小于Z值+1.96,即为0.975。

013fe0fd863711b4493f1a9ba8852f22.png

bdd3cb64558c97f9639a0b6c08dcd834.png

5c16c271640ae1ddc48b72dfb6f4ea3d.png

因此,95%的下载时间在3.08到10.92秒之间。

您可以使用Excel来计算1个正态概率,而不是在表中查找累积概率。图显示了一个工作表,该工作表计算正常概率并找到与示例1至5类似的问题的X值。

13bdb532bb5064c17866465cc204bc27.png

819b3757eb9178e9713a68941ce43f08.png

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页