1.LPA算法简介
标签传播算法(Label Propagation Algorithm,LPA)是由Zhu等人于2002年提出,它是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。
LPA算法思路简单清晰,其基本过程如下:
(1)为每个节点随机的指定一个自己特有的标签;
(2)逐轮刷新所有节点的标签,直到所有节点的标签不再发生变化为止。对于每一轮刷新,节点标签的刷新规则如下:
对于某一个节点,考察其所有邻居节点的标签,并进行统计,将出现个数最多的那个标签赋值给当前节点。当个数最多的标签不唯一时,随机选择一个标签赋值给当前节点。
在标签传播算法中,节点的标签更新通常有同步更新和异步更新两种方法。同步更新是指,节点x在t时刻的更新是基于邻接节点在t-1时刻的标签。异步更新是指,节点x在t时刻更新时,其部分邻接节点是t时刻更新的标签,还有部分的邻接节点是t-1时刻更新的标签。LPA算法在标签传播过程中采用的是同步更新,研究者们发现同步更新应用在二分结构网络中,容易出现标签震荡的现象。因此,之后的研究者大多采用异步更新策略来避免这种现象的出