以x1,x2,x3,x4,x5为未知数的五元一次不定方程x1+x2+x3+x4+x5=9的非负整数解的组数是多少?
x1,x2,x3,x4,x5都是非负整数,令yi = xi + 1 , (i=1,2,3,4,5) 则y1,y2,y3,y4,y5都是正整数,且 y1+y2+y3+y4+y5 = 14 考虑以下场景,把14个排成一列的“小球”,往小球之间插入4块“挡板”,分成5组。 因此也有13个空挡可以插入“挡板", 插入后小球的分组恰好对应y1,y2,y3,y4,y5 的一组解。 因此插入挡板的方法数目就是原方程的解的数目。值为 4C13
一般情况下,x1+..xn=m的非负整数解个数为C(m+n-1,n-1)