多元一次不定方程的非负整数解个数

以x1,x2,x3,x4,x5为未知数的五元一次不定方程x1+x2+x3+x4+x5=9的非负整数解的组数是多少?

 

x1,x2,x3,x4,x5都是非负整数,令yi = xi + 1 , (i=1,2,3,4,5) 则y1,y2,y3,y4,y5都是正整数,且 y1+y2+y3+y4+y5 = 14 考虑以下场景,把14个排成一列的“小球”,往小球之间插入4块“挡板”,分成5组。 因此也有13个空挡可以插入“挡板", 插入后小球的分组恰好对应y1,y2,y3,y4,y5 的一组解。 因此插入挡板的方法数目就是原方程的解的数目。值为 4C13

 

一般情况下,x1+..xn=m的非负整数解个数为C(m+n-1,n-1)

转载于:https://www.cnblogs.com/bendantuohai/p/4543456.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值