隔板法经典应用

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_37891604/article/details/81710038

隔板法就是在n个元素间插入(b-1)个板,即把n个元素分成b组的方法。C(n-1,b-1)

隔板法必须满足三个条件:

  1. 这n个元素必须相同,(2)所分成的每一组至少分得一个元素,(3)分成的组别彼此差异。

例如:某校组建一球队需16人,该校共10个班级,且每个班至少分配一个名额,共有几种情况。C(16-1,10-1)。

2.n件相同物品(或名额)分给m个人(或位置),允许若干个人(或位置)为空的问题,可以看成将这n件物品分成m组,允许若干组为空的问题.n件物品分成m组,需要m-1块隔板,将这n件物品和m-1块隔板排成一排,占n+m-1位置,从这n+m-1个位置中选m-1个位置放隔板,因隔板无差别,故隔板之间无序,是组合问题,故隔板有Cn+m-1 m-1种不同的方法,再将物品放入其余位置,因物品相同无差别,故物品之间无顺序,是组合问题,只有1种放法,根据分步计数原理,共有Cn+m-1 m-1×1=Cn+m-1 m-1种排法

3.求方程x1+x2+…+xk=n的非负整数解或正整数解

(1)方程x1+x2+x3+x4=10的正整数解有多少组?

(2)方程x1+x2+x3+x4=10的非负整数解有多少组?

解:(1)转化为10个相同的小球装入4个不同的盒子,每盒至少有一个,有C(10-1,4-1)=84种。

  1. 转化为10个相同的小球装入4个不同的盒子,可以有空盒,有C(10+4-1,4-1)种。

4.求方程x1+x2+…+xm=k(0<=xi<=n)的非负整数解的方案数。

解:有限制条件,用容斥搞一搞。

对于指定t个盒子(例如1,2,3,···,t号盒子)中的球数至少为N+1个球的方法等同于将(X-t*(N+1))个球放入Y个盒中,每个盒中至少0个球的放法,即(X-t*(N+1))个球放入Y个盒子,再在指定的t个盒中放入N个,为C(X-t*(N+1)+Y-1,Y-1)。

根据容斥原理,每个盒子至多N个球的方法为总数-所有指定一个盒子的球数大于N的方法+所有指定两个盒子的球数大于N的方法-所有三个盒子的球数大于N的方法+

即为C(k+m-1,m-1)-C(m,1)*C(k-(n+1)+m-1,m-1)+C(m,2)*C(k-2*(n+1)+m-1,m-1)+···+(-1)^t*C(m,t)*C(k-t*(N+1)+m-1,m-1)+···

其中t属于1到k/(N+1)的闭区间。C(k-t*(N+1)+m-1,m-1)的k-t*(N+1)+m-1>=m-1,一化简就可得到k/(N+1)。

展开阅读全文

没有更多推荐了,返回首页