n元线性方程非负整数解的个数问题

本文介绍了如何计算形如x1+x2+...+xn=m的方程非负整数解的个数,利用组合数学中的概念给出了解答公式,并通过将问题转化为m个1和n-1个0的全排列问题来直观理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设方程x1+x2+x3+...+xn = m(m是常数)

这个方程的非负整数解的个数有(m+n-1)!/((n-1)!m!),也就是C(n+m-1,m)。

具体解释就是m个1和n-1个0做重集的全排列问题。

转载于:https://www.cnblogs.com/itlqs/p/6656808.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值