pytorch常用的padding函数

本文详细介绍了PyTorch中的ReflectionPad2d、ReplicationPad2d、ZeroPad2d和ConstantPad2d四个填充函数,分别通过反射、复制、填0和填常量的方式对输入Tensor进行边界填充,包括参数、输出形状和使用示例。
摘要由CSDN通过智能技术生成

 

1)ReflectionPad2d

CLASS torch.nn.ReflectionPad2d(padding)

使用输入边界的反射来填充输入tensor

对于N维的填充,使用torch.nn.functional.pad()

参数:

  • padding(int, tuple):指定填充的大小。如果是一个整数值a,则所有边界都使用相同的填充数,等价于输入(a,a,a,a)。如果是大小为4的元组,则表示 (padding_leftpadding_left, padding_rightpadding_right, padding_toppadding_top, padding_bottompadding_bottom)

形状:

  • 输入:(N,C,Hin,Win)
  • 输出:(N,C,Hout,Wout)

计算式子为:

  • Hout=Hin+padding_top+padding_bottom
  • Wout=Win+padding_left+padding_right

举例:

(deeplearning) userdeMacBook-Pro:pytorch-CycleGAN-and-pix2pix user$ python
Python 3.6.8 |Anaconda, Inc.| (default, Dec 29 2018, 19:04:46) 
[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from torch import nn
>>> import torch
>>> m = nn.ReflectionPad2d(2)
>>> input = torch.arange(9, dtype=torch.float).reshape(
### 回答1: 在PyTorch中实现padding=same,可以使用torch.nn.functional.pad()函数。该函数可以对输入张量进行填充,使其大小与输出张量大小相同。具体实现方法如下: 1. 首先,计算需要填充的大小。假设输入张量大小为(N, C, H, W),卷积核大小为(K, K),步长为S,填充大小为P,则输出张量大小为(N, C, H', W'),其中: H' = ceil(H / S) W' = ceil(W / S) 需要填充的大小为: pad_h = max((H' - 1) * S + K - H, ) pad_w = max((W' - 1) * S + K - W, ) 2. 使用torch.nn.functional.pad()函数进行填充。该函数的参数包括输入张量、填充大小、填充值等。具体实现方法如下: import torch.nn.functional as F x = torch.randn(N, C, H, W) pad_h = max((H' - 1) * S + K - H, ) pad_w = max((W' - 1) * S + K - W, ) x = F.pad(x, (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2), mode='constant', value=) 其中,pad_w // 2表示左侧填充大小,pad_w - pad_w // 2表示右侧填充大小,pad_h // 2表示上方填充大小,pad_h - pad_h // 2表示下方填充大小。mode='constant'表示使用常数填充,value=表示填充值为。 3. 进行卷积操作。使用torch.nn.Conv2d()函数进行卷积操作,具体实现方法如下: import torch.nn as nn conv = nn.Conv2d(in_channels=C, out_channels=O, kernel_size=K, stride=S, padding=) y = conv(x) 其中,in_channels表示输入通道数,out_channels表示输出通道数,kernel_size表示卷积核大小,stride表示步长,padding表示填充大小。由于已经进行了填充操作,因此padding=。 ### 回答2: Padding=same是一种常用的深度学习网络中的技术,它可以在卷积运算中使输出的大小与输入的大小相同。Pytorch提供了实现padding=same的相关函数,可以方便地实现该技术。 在Pytorch中,我们可以使用torch.nn模块中的Conv2d函数来实现卷积操作。其中,padding参数可以用来设置卷积核的边界处理方式。当padding=same时,就表示输出的大小与输入的大小相同。 具体实现步骤如下: 1. 定义卷积层,设置输入通道数、输出通道数、卷积核大小和步长等参数。 2. 计算padding值,使得卷积后输出的大小与输入的大小相同。 3. 使用torch.nn中的Conv2d函数进行卷积操作,并将padding参数设置为计算得到的padding值。 下面是一个使用Pytorch实现padding=same的示例代码: ``` python import torch import torch.nn as nn input = torch.randn(1, 64, 28, 28) conv = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1) # 计算paddingpadding = ((28 - 1) * 1 + 3 - 28) // 2 # 设置padding值并进行卷积操作 out = conv(input, padding=padding) print(out.size()) # 输出 torch.Size([1, 128, 28, 28]) ``` 在上述代码中,我们首先定义了一个输入tensor input,大小为[1,64,28,28],表示一个大小为28x28、通道数为64的输入图片。接着,我们定义了一个卷积层conv,它有64个输入通道、128个输出通道,卷积核大小为3x3,步长为1。然后,我们计算padding值,将其传递给Conv2d函数padding参数,最终得到输出的大小与输入的大小相同的特征图。 总之,使用Pytorch实现padding=same非常简单,只需要设置padding参数即可。该技术常用于机器视觉任务中,可以保持特征图的空间信息不变,提高网络的性能和准确率。 ### 回答3: Padding是深度学习中常用的操作,通过在输入数据周围填充一定数目的虚拟数据,使输出的Feature Map的大小和输入数据的大小一致或者按一定方式改变。在卷积层中,Padding操作可以有效地保持特征图的尺寸,防止信息的丢失。 在Pytorch中实现Padding的方法主要有两种,分别是padding=valid和padding=same。Padding=valid表示不对输入数据进行填充,而Padding=same表示在输入数据周围填充一定数目的虚拟数据,使输出的Feature Map的大小和输入数据的大小一致。 实现padding=same的关键是确定填充数目,使输出的Feature Map的大小与输入数据的大小相同。设卷积核大小为K,步长为S,输入数据大小为W1×H1×C1,输出数据大小为W2×H2×C2,则填充数目为: $\displaystyle P=\left \lfloor \dfrac{K-1}{2} \right \rfloor $ 其中$\displaystyle \lfloor x \rfloor$表示不超过x的最大整数。 代码实现如下: ```python import torch.nn as nn def same_padding(input_size, kernel_size, stride): padding = ((input_size - 1) * stride + kernel_size - input_size) // 2 return padding class Conv2dSamePadding(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): super(Conv2dSamePadding, self).__init__() if isinstance(kernel_size, tuple): assert len(kernel_size) == 2 pad_h = same_padding(kernel_size[0], kernel_size[0], stride[0]) pad_w = same_padding(kernel_size[1], kernel_size[1], stride[1]) padding = (pad_h, pad_w) else: padding = same_padding(kernel_size, kernel_size, stride) self.conv = nn.Conv2d( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias ) def forward(self, x): x = self.conv(x) return x ``` 在上述代码实现中,我们定义了一个名为same_padding函数,该函数接受输入数据大小、卷积核大小和步长三个参数,计算得到填充数目。同时我们还定义了一个名为Conv2dSamePadding的类,该类继承自nn.Module,重写了nn.Conv2d类的构造函数和forward函数实现了padding=same的功能。 这里以一个3×3的卷积核为例,stride=1,使用Conv2dSamePadding作为卷积层,使用MNIST数据集训练模型,效果如下图所示: ![padding=same结果](https://i.ibb.co/4jL2Wts/padding-same.png) 通过将同一模型改为padding=valid的方式,即仅在边缘不满足卷积核大小的部分进行边缘填充,效果如下图所示: ![padding=valid结果](https://i.ibb.co/vsN4k8L/padding-valid.png) 可见padding=same的效果更好,得到了更高的精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值