寻找素数对
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6675 Accepted Submission(s): 3315
Problem Description
哥德巴赫猜想大家都知道一点吧.我们现在不是想证明这个结论,而是想在程序语言内部能够表示的数集中,任意取出一个偶数,来寻找两个素数,使得其和等于该偶数. 做好了这件实事,就能说明这个猜想是成立的. 由于
可以有不同的素数对来表示同一个偶数,所以专门要求所寻找的素数对是两个值最相近的.
Input
输入中是一些偶整数M(5<M<=10000).
Output
对于每个偶数,输出两个彼此最接近的素数,其和等于该偶数.
Sample Input
20 30 40
Sample Output
7 13
13 17
17 23
题目挺水,但WA了一次,因为10的测试数据是5 5,要注意。
1 #include<stdio.h> 2 #include<math.h> 3 4 int is_prime(int n) 5 { 6 int i, flag = 1; 7 for (i = 2; i * i <= n; i++) 8 { 9 if (n % i == 0) 10 { 11 flag = 0; 12 return 0; 13 } 14 } 15 if (!flag) 16 return n; 17 } 18 19 int main() 20 { 21 int n, flag, i, min, minx, s; 22 while (scanf("%d", &n) != EOF) 23 { 24 flag = 1; 25 for (i = 2; i <= n / 2; i++) 26 { 27 if (is_prime(i) && is_prime(n - i)) 28 { 29 s = abs(n - 2 * i); 30 if (flag) 31 { 32 min = s; 33 minx = i; 34 flag = 0; 35 } 36 else if (!flag) 37 { 38 if (min > s) 39 { 40 min = s; 41 minx = i; 42 } 43 } 44 } 45 } 46 printf("%d %d\n", minx, n - minx); 47 } 48 return 0; 49 }