题目大意:
在一组数中,找到连续的两段 , 是这两段相加和达到最大
这里利用dp[2][N]的数组保存所有的状态
dp[0][i]表示取到第i个数时只取了一段的最大和,第i个数是一定要被取到的
dp[1][i]表示取到第i个数时取了2段的最大和,第i个数是一定要被取到的
而题目所求答案就是所有dp[1][i]中的最大值
状态转移方程:
dp[0][i] = max{dp[0][i-1]+a[i] , a[i]}
dp[1][i] = max{dp[0][j]+a[i] , dp[1][i-1]+a[i]} j<i
很容易看出dp[0][i]在线性时间内是能够求出来的
而dp[1][i]却因为j的原因,要在n^2的时间内求出,而我们这里只要找到dp[0][j]中的最大值
那么我们用maxn不断更新 i 之前的dp[0][j]的最大值即可
因为答案可能为负数,所以初始化要将数设置的尽可能小,我一开始memset为0,导致错误还不理解
POJ2593同理
1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 using namespace std; 5 6 #define N 50005 7 #define INF 200000000 8 int a[N] , dp[2][N]; 9 10 int main() 11 { 12 // freopen("a.in" , "r" , stdin); 13 int T; 14 scanf("%d" , &T); 15 while(T--) 16 { 17 int n; 18 scanf("%d" , &n); 19 dp[0][0] = -INF , dp[1][1] = -INF; 20 int maxn = -INF , ans = -INF; 21 for(int i=1 ; i<=n ; i++){ 22 scanf("%d" , &a[i]); 23 dp[0][i] = max(dp[0][i-1]+a[i] , a[i]); 24 if(i>1) dp[1][i] = max(a[i] + maxn , dp[1][i-1]+a[i]) , ans = max(ans , dp[1][i]); 25 maxn = max(maxn , dp[0][i]); 26 } 27 printf("%d\n" , ans); 28 // if(T>0) puts(""); 29 } 30 return 0; 31 }