hdu 5151 Sit sit sit(区间dp+排列组合)

题目链接:hdu 5151 Sit sit sit

题意:

一共有并排N个椅子, N个学生依次去坐,同时满足3个条件就不能坐下去:

1,该椅子不在最左,不在最右。

2,该椅子左右都有人坐了。

3,左右的椅子不同颜色。
求最后N个人都能坐下去,有多少不同的情况.

题解:

考虑区间dp,dp[i][j] = sum(dp[i][k-1] * dp[k+1][j] * c[j - i][k - i])其中满足(v[k-1]==v[k+1])

表示i到j区间最后来坐k位置,乘组合是因为合并这两段区间的时候,j-i个人中选择k-i个人去坐左区间的位置,剩下的就坐右区间的位置。

 1 #include<bits/stdc++.h>
 2 #define mst(a,b) memset(a,b,sizeof(a))
 3 #define F(i,a,b) for(int i=a;i<=b;++i)
 4 using namespace std;
 5 typedef long long ll;
 6 const int P=1e9+7,N=107;
 7 
 8 ll c[N][N],dp[N][N];
 9 int n,v[N];
10 
11 void Init()
12 {
13     for(int i=0;i<=100;i++)
14     {
15         c[i][0]=c[i][i]=1;
16         for(int j=1;j<i;j++)c[i][j]=(c[i-1][j]+c[i-1][j-1])%P;
17     }
18 }
19 
20 int main()
21 {
22     Init();
23     while(~scanf("%d",&n))
24     {
25         F(i,1,n)scanf("%d",v+i);
26         mst(dp,0);
27         F(i,1,n)dp[i][i]=1;
28         F(l,2,n)F(i,1,n-l+1)
29         {
30             int j=i+l-1;
31             dp[i][j]=(dp[i+1][j]+dp[i][j-1])%P;
32             F(k,i+1,j-1)if(v[k-1]==v[k+1])
33             {
34                 dp[i][j]=(dp[i][j]+dp[i][k-1]*dp[k+1][j]%P*c[j-i][k-i])%P;
35             }
36         }
37         printf("%lld\n",dp[1][n]);
38     }
39     return 0;
40 }
View Code

 

转载于:https://www.cnblogs.com/bin-gege/p/6424579.html

### HDU OJ 排列组合问题解法 排列组合问题是算法竞赛中的常见题型之一,涉及数学基础以及高效的实现技巧。以下是关于如何解决此类问题的一些通用方法和具体实例。 #### 数学基础知识 在处理排列组合问题时,需要熟悉以下几个基本概念: - **阶乘计算**:用于求解全排列的数量 $ n! = n \times (n-1) \times ... \times 1 $[^4]。 - **组合数公式**:$ C(n, k) = \frac{n!}{k!(n-k)!} $ 表示从 $ n $ 中选取 $ k $ 的方案数[^5]。 - **快速幂运算**:当涉及到模运算时,可以利用费马小定理优化逆元的计算[^6]。 #### 题目推荐分析 以下是一些典型的 HDU OJ 上的排列组合题目及其可能的解法: ##### 1. 基础排列组合计数 - **HDU 2039 近似数** - 描述:给定两个整数 $ a $ 和 $ b $,统计区间内的近似数数量。 - 方法:通过枚举每一位上的可能性来构建合法数字并计数[^7]。 ```cpp #include <iostream> using namespace std; long long comb(int n, int r){ if(r > n || r < 0)return 0; long long res=1; for(int i=1;i<=r;i++)res=res*(n-i+1)/i; return res; } int main(){ int t,n,k; cin>>t; while(t--){ cin>>n>>k; cout<<comb(n+k-1,k)<<endl; // 组合数应用 } } ``` ##### 2. 动态规划的应用 - **HDU 1028 Ignatius and the Princess III** - 描述:给出正整数 $ m $ 和 $ n $,问有多少种方式把 $ m $ 分成最多 $ n $ 份。 - 方法:定义状态转移方程 $ dp[i][j]=dp[i-1][j]+dp[i][j-i] $ 来表示当前总和为 $ j $ 并分成至多 $ i $ 份的情况数目[^8]。 ```cpp #include<bits/stdc++.h> using namespace std; const int MAXN=1e3+5; long long c[MAXN][MAXN]; void init(){ memset(c,0,sizeof(c)); c[0][0]=1; for(int i=1;i<MAXN;i++){ c[i][0]=c[i][i]=1; for(int j=1;j<i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%(1e9+7); } } int main(){ init(); int T,m,n; scanf("%d",&T); while(T--){ scanf("%d%d",&m,&n); printf("%lld\n",c[m+n-1][min(m,n)]); } } ``` #### 总结 针对不同类型的排列组合问题,可以选择合适的工具和技术加以应对。无论是简单的直接计算还是复杂的动态规划模型,都需要扎实的基础知识作为支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值