YAML介绍
YAML是一种比XML和JSON更轻的文件格式,也更简单更强大,它可以通过缩进来表示结构,是不是与Python使用有异曲同工之处;
YAML的可读性好。 YAML和脚本语言的交互性好。 YAML使用实现语言的数据类型。
其官网描述:YAML语言的设计目标,就是方便人类读写。
YAML文件规则
区分大小写; 使用缩进表示层级关系; 使用空格键缩进,而非Tab键缩进 缩进的空格数目不固定,只需要相同层级的元素左侧对齐; 文件中的字符串不需要使用引号标注,但若字符串包含有特殊字符则需用引号标注; 注释标识为#
YAML文件数据结构
对象:键值对的集合(简称 "映射或字典") 键值对用冒号 “:” 结构表示,冒号与值之间需用空格分隔 数组:一组按序排列的值(简称 "序列或列表") 数组前加有 “-” 符号,符号与值之间需用空格分隔 纯量(scalars):单个的、不可再分的值(如:字符串、bool值、整数、浮点数、时间、日期、null等) None值:可用null、可 ~ 表示
附录:摘自官网
以下是yaml对象与python对象对应表
python中读取yaml配置文件
PyYaml是Python的一个专门针对YAML文件操作的模块,使用起来非常简单
pip install pyyaml # 如果是py2,使用 pip install yaml
导入的模块为yaml
import yaml
A.读取yaml文件数据
python通过open方式读取文件数据,再通过load函数将数据转化为列表或字典;
import yamldef get_yaml_data(yaml_file): # 打开yaml文件 with open(yaml_file, 'r', encoding="utf-8") as file: file_data = file.read() print(file_data) print("对象类型是:",type(file_data)) # 将字符串转化为字典或列表 print("***转化yaml数据为字典或列表***") data = yaml.load(file_data,Loader=yaml.SafeLoader) print(data) print("对象类型:", type(data)) return data#测试代码get_yaml_data("data_test.yaml")
执行结果是:
B.yaml文件数据为键值对
yaml文件中内容为键值对:
# yaml键值对:即python中字典username: woodpassword: 123456
python解析yaml文件后获取的数据:
{'usrname': 'wood', 'password': 123456}
yaml文件中内容为“键值对'嵌套"键值对"
# yaml键值对嵌套:即python中字典嵌套字典usr1: name: a psw: 123usr2: name: b psw: 456
python解析yaml文件后获取的数据:
{'usr1': {'name': 'a', 'psw': 123}, 'usr2': {'name': 'b', 'psw': 456}}
yaml文件中“键值对”中嵌套“列表”
# yaml键值对中嵌套数组usr3: - a - b - cusr4: - d
python解析yaml文件后获取的数据:
{'usr3': ['a', 'b', 'c'], 'usr4': ['d']}
yaml文件数据为数组
(1)yaml文件中内容为数组
# yaml数组- a- b- 5
python解析yaml文件后获取的数据:
['a', 'b', 5]
(2)yaml文件“数组”中嵌套“键值对”
# yaml"数组"中嵌套"键值对"- usr1: aaa- psw1: 111 usr2: bbb psw2: 222
python解析yaml文件后获取的数据:
[{'usr1': 'aaa'}, {'psw1': 111, 'usr2': 'bbb', 'psw2': 222}]
C.yaml文件中基本数据类型:
# 纯量定义s_val: wood # 字符串:{'s_val': 'wood'}spec_s_val: "name\n" # 特殊字符串:{'spec_s_val': 'name\n'num_val: 30.14 # 数字:{'num_val': 30.14}bol_val: true # 布尔值:{'bol_val': True}nul_val: null # null值:{'nul_val': None}nul_val1: ~ # null值:{'nul_val1': None}date_val: 2020-06-01 # 日期值:{'date_val': datetime.date(2020, 06, 01)}
D.yaml文件中引用
yaml文件中内容
animal: &animal tigertest: *animal
python读取的数据
{'animal': 'tiger', 'test': 'tiger'}
python中读取多个yaml文档
1. 多个文档在一个yaml文件,使用 --- 分隔方式来分段
如:yaml文件中数据
# 分段yaml文件中多个文档---student1: zhangsanage: 18---student2: lisiage: 20
2. python脚本读取一个yaml文件中多个文档方法
python获取yaml数据时需使用load_all函数来解析全部的文档,再从中读取对象中的数据
# yaml文件中含有多个文档时,分别获取文档中数据import yamldef get_yaml_data(yaml_file): # 打开yaml文件 with open(yaml_file, 'r', encoding="utf-8") as file: file_data = file.read()
all_data = yaml.load_all(file_data,Loader=yaml.SafeLoader) for data in all_data: print(data)
get_yaml_data("data_test.yaml")
执行结果为:
python对象生成yaml文档
1. 直接导入yaml(即import yaml)生成的yaml文档
通过yaml.dump()方法不会将列表或字典数据进行转化yaml标准模式,只会将数据生成到yaml文档中
# 将python对象生成yaml文档import yamldef generate_yaml(yaml_file): info_object = {'school': 'wood', 'students': ['zhangsan', 'lisi']} file = open(yaml_file, 'w', encoding='utf-8') yaml.dump(info_object, file) file.close()#测试代码generate_yaml("data_test.yaml")
执行结果:
2. 使用ruamel模块中的yaml方法生成标准的yaml文档
(1)使用ruamel模块中yaml前提条件
使用yaml需要安装的模块:ruamel.yaml(pip3 install ruamel.yaml); 导入的模块:from ruamel import yaml
(2)ruamel模块生成yaml文档
from ruamel import yamldef generate_yaml_ruamel(yaml_file): info_object = {'school': 'wood', 'students': ['zhangsan', 'lisi']} with open(yaml_file, 'w', encoding='utf-8') as file: yaml.dump(info_object, file, Dumper=yaml.RoundTripDumper)#测试代码generate_yaml_ruamel("data_test.yaml")
执行结果:
(3)ruamel模块读取yaml文档
# 通过from ruamel import yaml读取yaml文件from ruamel import yamldef get_yaml_data_ruamel(yaml_file): with open(yaml_file, 'r', encoding='utf-8') as file: data = yaml.load(file.read(), Loader=yaml.SafeLoader) print(data)
#测试代码get_yaml_data_ruamel("data_test.yaml")
了解更多信息关注公众号