python拟合威布尔参数_威布尔分布拟合数据

本文介绍如何使用Python对一组整数值进行威布尔分布拟合,通过获取最佳拟合参数,绘制数据直方图和威布尔分布PDF。内容包括数据处理、最大似然估计法求取参数,并展示拟合效果与原始数据的比较。
摘要由CSDN通过智能技术生成

我有一组整数值,我想把它们设置成Weibull分布,然后得到最佳拟合参数。然后利用最佳拟合参数,绘制数据的直方图和Weibull分布的pdf。这是我用过的密码。在from jtlHandler import *

import warnings

import numpy as np

import pandas as pd

import scipy.stats as st

import matplotlib

matplotlib.use('Agg')

import matplotlib.pyplot as plt

def get_pdf(latencies):

a = np.array(latencies)

ag = st.gaussian_kde(a)

ak = np.linspace(np.min(a), np.max(a), len(a))

agv = ag(ak)

plt.plot(ak,agv)

plt.show()

return (ak,agv)

def fit_to_distribution(distribution, data):

params = distribution.fit(data)

# Return MLEs for shape (if applicable), location, and scale parameters from data.

#

# MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided wi

Python中可以使用SciPy库来进行威布尔分布拟合威布尔分布是一种连续概率分布,常用于描述可靠性分析和寿命数据分析。下面是使用Python进行威布尔分布拟合的步骤: 1. 导入所需的库: ```python import numpy as np from scipy.stats import weibull_min from scipy.optimize import curve_fit import matplotlib.pyplot as plt ``` 2. 准备数据: 首先,你需要准备一组威布尔分布的样本数据。假设你的数据存储在一个NumPy数组中,可以使用以下代码创建一个示例数据集: ```python data = np.array([10, 12, 15, 18, 20, 22, 25, 28, 30]) ``` 3. 定义威布尔分布函数: 在进行拟合之前,需要定义一个威布尔分布的概率密度函数。可以使用SciPy库中的`weibull_min`函数来定义威布尔分布函数: ```python def weibull(x, shape, loc, scale): return weibull_min.pdf(x, shape, loc, scale) ``` 其中,`shape`、`loc`和`scale`是威布尔分布参数。 4. 进行拟合: 使用`curve_fit`函数进行拟合,该函数会返回拟合后的参数值和协方差矩阵。以下是拟合的代码: ```python params, cov = curve_fit(weibull, data, bins, p0=[1, 0, 1]) ``` 其中,`data`是样本数据,`bins`是数据的分组数,`p0`是初始参数的猜测值。 5. 绘制拟合曲线: 可以使用以下代码绘制拟合后的威布尔分布曲线: ```python x = np.linspace(min(data), max(data), 100) y = weibull(x, *params) plt.plot(x, y, label='Fitted Weibull Distribution') plt.hist(data, bins=bins, density=True, alpha=0.5, label='Histogram') plt.legend() plt.show() ``` 以上就是使用Python进行威布尔分布拟合的基本步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值