fvc如何计算_剑指offer__9:计算斐波那契数列的3种方法及复杂度分析

博客探讨了斐波那契数列的递归计算方法及其容易导致栈溢出和指数级时间复杂度的问题。接着介绍了如何通过循环避免递归,降低时间复杂度至线性。进一步,文章提出了利用矩阵快速幂优化算法,将时间复杂度降至对数级别,并详细解释了矩阵乘法和快速幂在这一过程中的应用。同时,扩展讨论了类似斐波那契数列的跳台阶问题及其解决方案。
摘要由CSDN通过智能技术生成

题目: 计算斐波那契数列第n项的值

n = 0, f(0) = 0;

n = 1, f(1) = 1;

n >= 2, f(n) = f(n-1) + f(n-2);

递归方法(not recommend)

function fibonacci(n) {

if (n <= 1) {

return n;

}

return fibonacci(n-1) + fibonacci(n-2);

}

针对递归方法的教学,斐波那数列可能是最常用来拿来举例的了,但是,实际计算时绝不推荐使用递归方法,很容易stack overflow。可以在浏览器中计算个fibonacci(100)试试。而且其时间复杂度为指数级,可以近似认为是2^n, 当然准确点可能是1.6^n。

其时间复杂度的计算: 递推关系式为f(n)=f(n-1)+f(n-2);显然是一个2阶常系数查分方程,其特征方程为x^2-x-1=0。 得其解x, 时间复杂度为O(1.618^n)

或者另一种思路: 该方法的递归求解过程其实就是其二叉树展开的过程,时间复杂度就是计算该二叉树的节点个数: 树高n层, 但不是满二叉树,忽略常数,是O(2^n)

将递归展开,以循环方式计算

function fibonacci(n) {

if (n <= 1) {

return n;

}

let one = 0;

let two = 1;

let res;

for (let i = 2; i <= n; i++){

res = one + two;

one = two;

two = res;

}

return res;

}

事件复杂度为O(n)

转化为二阶矩阵的阶乘方程

f(n) = f(n-1) + f(n-2)是一个二阶差分方程,一定可以转化为矩阵乘法的形式(?): (f(n), f(n-1)) = (f(n-1), f(n-2)·[[a, b], [c, d]]); 根据初始的几个值,带入n=2,n=3的结果可得,a=b=c=1, d=0;

所以(f(n), f(n-1)) = (f(2), f(1))·[[1, 1], [1, 0]]^(n-2)。所以问题已经转化成了如何最快计算一个矩阵的n次方的问题。

首先考虑如何很快的计算一个整数的n次方?

比如2的9次方:

9的2进制表示为 1001(长度为4)

2^9 = 2^1 * 2^8 (中间计算4次: 2^1, 2^2 = (21)2, 2^4 = (22)2, 2^8 = (24)2, 因为只有第1、4对应位置是1,所以其对应的值相乘即是结果)

所以在计算一个整数的N次方时,需要计算logN(其二进制的长度)次,即事件复杂度为O(logN)

function pow(base, power) {

let b = base;

let res = 1;

while (power) {

// 2进制中当前位置不为0

if ((power & 1) !== 0) {

res *= b;

}

// 2进制不断右移

power >>= 1;

// 得到当前位置所对应的基准值

b *= b;

}

return res;

}

如何计算矩阵的N次方?

C=[[1, 1], [1, 0]]; 求C^N:

const C = [[1, 1], [1, 0]];

//计算2阶矩阵的乘积

function matricsMultiple (C1, C2) {

const [a1, b1] = C1[0];

const [c1, d1] = C1[1];

const [a2, b2] = C2[0];

const [c2, d2] = C2[1];

return [

[a1 * a2 + b1 * c2, a1 * b2 + b1 * d2],

[c1 * a2 + d1 * c2, c1 * b2 + d1 * d2]

];

}

function matricsPow (C, power) {

let res = [[1, 0], [0, 1]];

let b = C;

while (power) {

if ((power & 1) !== 0) {

res = matricsMultiple(res, b);

}

power >>= 1;

b = matricsMultiple(b, b);

}

return res;

}

回归正题

关系式: (f(n), f(n-1)) = (f(2), f(1))·[[1, 1], [1, 0]]^(n-2) = (1, 1)·[[1, 1], [1, 0]]^(n-2)

令 [[a, b], [c, d]] 为 [[1, 1], [1, 0]]^(n-2)的解,则const [[a, b], [c, d]] = matricsPow(C, n-2);又有

(1, 1) · [[a, b], [c, d]] = (a+c, b+d), 所以fn = a+c;

最终算法为:

function fibonacci (n) {

if (n <= 1) {

return n;

}

if (n === 2) {

return 1;

}

// 计算矩阵的平方

function matricsMultiple (C1, C2) {

const [a1, b1] = C1[0];

const [c1, d1] = C1[1];

const [a2, b2] = C2[0];

const [c2, d2] = C2[1];

return [

[a1 * a2 + b1 * c2, a1 * b2 + b1 * d2],

[c1 * a2 + d1 * c2, c1 * b2 + d1 * d2]

];

}

function matricsPow (C, power) {

let res = [[1, 0], [0, 1]];

let b = C;

while (power) {

if ((power & 1) !== 0) {

res = matricsMultiple(res, b);

}

power >>= 1;

b = matricsMultiple(b, b);

}

return res;

}

const C = [[1, 1], [1, 0]];

const [[a, _b], [c, _d]] = matricsPow(C, n - 2);

return a + c;

}

时间复杂度为O(logN),及N的2进制表示的长度。加法的时间复杂度为常数,而计算乘法的次数为logN,所以得时间复杂度为O(logN)

扩展1: 跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

找关系: 第一次有两种选择:跳1级,还剩n-1个台阶; 跳2级,还剩n-2个台阶

f(n) = f(n-1) + f(n-2), f(1) = 1, f(2) = 2

类似菲波那切数列。

扩展2: 变态跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

f(n) = f(n-1) + f(n-2) + f(n-3) + ... +f(n-n) = f(0) + f(1) + ... + f(n-1)

分析前面几个例子,找规律:

f(1) = 1;

f(2) = f(2-1) + f(2-2) = f(0) + f(1) = 2;

f(3) = f(3-1) + f(3-2) + f(3-3) = f(0) + f(1) + f(2) = 2f(2);

f(4) = f(4-1) + f(4-2) + f(4-3) + f(4-4) = f(0) + f(1) + f(2) + f(3) = 2f(3);

...

发现 n>=2时都满足,f(n) = 2f(n-1); 所以此时f(n) = f(1) * 2^(n-1) = pow(2, n-1);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值