图像融合质量评价方法的python代码实现——MS-SSIM
图像融合质量评价方法的python代码实现——MS-SSIM
文章目录
1 前言
2 MS-SSIM介绍
2 MS-SSIM的代码
2.1 matlab代码
2.2 python代码
2.3 效果对比
3 总结
1 前言
在评估融合图像质量时,由于作者使用的是python代码进行融合,但有些评价指标只有matlab代码就十分不方便,所以将其重写为python代码,之前已经实现了
Q
A
B
/
F
Q^{AB/F}
QAB/F的python代码,详见图像融合质量评价方法的python代码实现——Qabf。
2 MS-SSIM介绍
MS-SSIM由Z. Wang,E.P. Simoncelli等人提出,是一种多尺度结构相似性方法,在结合观看条件的变化方面,它比以前的单尺度方法具有更大的灵活性。从Multiscale structural similarity for image quality assessment中的实验结果表明,在适当的参数设置下,多尺度方法的性能优于最佳的单尺度SSIM模型以及最新的图像质量指标。公式如下:
M
S
S
S
I
M
(
Z
,
K
)
??
=
??
[
l
M
(
Z
,
K
)
]
α
M
∏
i
=
1
M
[
s
i
(
Z
,
K
)
]
β
i
[
z
i
(
Z
,
K
)
]
γ
i
MSSSIM(Z,K)\;=\;\left[l_M(Z,K)\right]^{\alpha_M}\prod_{i=1}^M\left[s_i(Z,K)\right]^{\beta_i}\left[z_i(Z,K)\right]^{\gamma_i}
MSSSIM(Z,K)=[lM?(Z,K)]αM?i=1∏M?[si?(Z,K)]βi?[zi?(Z,K)]γi?
2 MS-SSIM的代码
matlab的代码可以看图像融合质量评价方法MSSIM、MS-SS