二维随机变量期望公式_多维随机变量函数的分布

本文介绍了二维随机变量的期望公式,包括离散场合下的卷积公式、连续场合下的卷积公式,以及最大值、最小值分布。还探讨了变量变换法在解决离散型和连续型随机变量问题中的应用,并提供了多个例题解析。
摘要由CSDN通过智能技术生成

7c6e532a3adb58520540dd299d19bbad.png

coffee刚开始学习这一部分内容的时候,感到有些吃力,应该是大多数同学都有的感受,不过随着coffee啃教材啃题目多了,有了“山重水复疑无路,柳暗花明又一村”的感觉。现在coffee结合教材上的知识点,将自己的总结分享出来。这篇文章的结构是先给出几个重要的结论,再结合几个例题给出解决一般问题的方法。

这里讨论的多维随机变量,可分为离散型和连续型的,因而其函数就有三种组合:仅有离散型、仅有连续型、离散型和连续型的组合。

对于多维离散型随机变量的函数,若所给的是多维离散型随机变量的分布列,那么一般情况下根据该分布列和函数关系即可求出,这类问题较为简单,不做过多阐述。

离散场合下的卷积公式

我们首先定义分布的可加性:如果若干个属于同一类分布的独立随机变量的和的分布仍属于此类分布,称满足这样性质的分布具有可加性

这里有两个特殊的离散型随机变量,二项分布泊松分布,它们是具有可加性的。这一结论的证明需要引入离散场合下的卷积公式(这里的卷积是指,寻求两个独立随机变量和的分布的运算):

设随机变量
是两个属于同一类分布的独立的离散型随机变量,设
的取值范围的交集为
,记
,则
.

这一结论是显然的,因为

是独立的。不过要注意的是,上述的“属于同一类分布的独立的离散型随机变量”并不是“独立同分布”,这两个概念要严加区分。“同分布”意味着两随机变量服从同一个分布,即分布的参数要全部一致,而“同一类分布”并不意味着分布的参数要相同。

二项分布和泊松分布的可加性的证明详见教材,这里仅给出结论:

二项分布的可加性:

若随机变量
,且
相互独立,则
。这个性质可以推广到有限个随机变量的场合:
。此即说明服从二项分布
的随机变量可以分解为
个相互独立的服从两点分布
的随机变量之和。

泊松分布的可加性:

若随机变量
,且
相互独立,则
。这个性质可以推广到有限个随机变量的场合:

连续场合下的卷积公式

为两个相互独立的连续随机变量,其密度函数分别为
,则其和
的密度函数为:

由此公式可以得到一些连续型随机变量分布的可加性:

正态分布的可加性:

,且
独立,则
。这个结论可以推广到有限场合:任意
个相互独立的正态变量的线性组合仍服从正态分布:若
,对于任意不全为零的常数列
.

伽玛分布的可加性:

,且
独立,则
。这个结论可以推广到有限个尺度参数(
)相同的场合:任意
个相互独立的尺度参数(
)相同的伽玛变量的和仍服从伽玛分布:若
, 则
.

又因为

(由此可推出

结合伽玛分布的可加性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值