反余弦函数的导数_图解普林斯顿微积分(重制) 09:反函数和反三角函数

这里也衷心感谢 @Mr.C 同学协助转成将此系列原文档中公式转成 LaTeX 格式. ✪提示: 如果文中数字/公式显示较大, 请点击右上角中"刷新"即可恢复正常

▌第10 章反函数和反三角函数▌10.1 导数和反函数第一章就回顾了反函数(Inverse function)的基本知识, 可以快速地再看下, 请点击[这里]. 现在讨论导数和反函数之间的两个联系.10.1.1 使用导数证明反函数存在如果一个可导函数 53439522d5c60338c09ddee944c5ef5b.png , 它的导数总是正的, 那么该函数一定是递增函数, 且满足水平线检验. 没有水平线会与 a6186abd5d6e23c3f8e42cd8a0a34c1f.png 相交两次. 由于 53439522d5c60338c09ddee944c5ef5b.png 满足水平线检验, 所以我们知道 53439522d5c60338c09ddee944c5ef5b.png 有反函数.

be7ada9fc6ddfeed2a8262f57554b8ef.png

d61c0e518586b54cf1ecd4cd00a0769f.png

函数上只有一个点使得 70d86ff2e1d72b6bbd7fd678bc3e6c69.png, 这样仍然有反函数.

4db86fe8451b14675582ac65f7077c12.png

10.1.2 导数和反函数:可能出现的问题函数的导数可以偶尔是 f019d62fa1396f86440165fff1ae5558.png, 而该函数仍然有反函数. 但下图中函数没有通过水平检验, 在 e2a9e127566d5fff7433a54242851afe.png 和该函数有无数次相交(红色线段标识出), 故不存在反函数.

55179e1b05c6e071c7cf77b08f91911d.png

一般来说当函数有不连续点或垂直渐近线时, 上面导数和反函数的方法也不再适用了.10.1.3 求反函数的导数知道函数 53439522d5c60338c09ddee944c5ef5b.png 有反函数, 我们通常称之为 a4dc8baa6370446f9d8a1d6a6cb7de1d.png , 该反函数的导数就是原函数的导数的倒数.如果 45a3d69648a521b27c9e64fa3b7aa5a6.png, 则 49b55840d2716c7a5db9a05a6f3a462c.png.如果一个函数, 它有反函数, 并且原函数在点 4eba47b1125649ffc8587212f7efaa97.png 处的斜率为 f019d62fa1396f86440165fff1ae5558.png, 则其反函数在点 1240c3697f73bc5990217d99a42a8452.png 处的斜率将会是无限的.

3157133362f2aaaa7a142c441a87cd08.png

▌10.2 反三角函数

5bea59599811cf765b6427f56755a8ab.png

将 a957e6d3539729dea2b0cb84cbc2f9ad.png 定义域限制为区间 89a618e0d7b61f7548843c05ff92eab4.png, 则它满足水平线检验, 故它有反函数45a3d69648a521b27c9e64fa3b7aa5a6.png, 写成 13e84cba4e5fb523ed0d0c73954990a1.png 或 656d41bac861b1760f3902010b13f408.png .

ab09e8b9fcc4a749ad1177902173bf28.gif

10.2.2 反余弦函数

7b7223adc06e5a290be6f0ace80a3339.png

e6f4eae7059f210a5eea3d035d7cb5c9.png, 其中 b63104c18663e628d6b4faf327fe21a4.png.2320e28723c3134dbc44d71461f076a8.png 既不是偶函数, 也不是奇函数; 其定义域为 fd6f0226b94781a38c032781477b0e34.png, 值域为 de9581a580c1b79386bc63647aceaa57.png.10.2.3 反正切函数

f7bb5eb50e7e3625a5a558b519a6ec7d.png

10.3 反双曲函数要记住, 所有这些导数公式只有当 x 在相关函数本身的定义域内时才成立!

a746f1870432489031c97ea9bf0eb59b.png

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页