1.输入nftool;点击next
2.输入特征X 和目标值Y如下:【注意按行/按列】

3.设置训练集/验证集/测试机比例:【一般默认为0.7:0.15:0.15】

4.设置隐藏层个数:【需要调的参数之一】

5.选择优化算法:默认如图;点击train进行训练

6.生成图像:【如图plots】

6.1 performance

横坐标:训练结束时的epochs数【神经网络一次前向传播+一次反向传播=一个epoch】
纵坐标:均方误差
从图中可以得到:在epochs=5时,验证集valiadation和测试集test达到最小均方误差。
6.2 training state

横坐标:epoch
纵坐标:梯度gradient;mu?;val fail?;
梯度:若梯度为0,则为图像最低点,即最优位置
mu:
val fail:
【validation check=6:若连续六次训练,训练误差没有变小,则假定继续训练下去效果不会变好,停止训练。】
6.3 error histogram【误差直方图】

横坐标:误差区间的中位数;
纵坐标:位于该误差区间的样本个数
可以得到:神经网络的输出值与样本原目标值的误差;
6.4 regression【检验预测值和目标值的线性化程度?】

横坐标:样本原目标值;
纵坐标:神经网络输出预测值;
可以得到:原目标值和预测值的相关度;用系数R表示,若R越接近1,则表示线性化程度越高,结果越好。
7 另外添加更多的测试集

8.生成代&保存训练结果和网络
点击xx script,生成所需要的代码(m文件);

点击save results,将数据结果和网络输出到workspace;

原文:https://www.cnblogs.com/feynmania/p/12893442.html
本文详细介绍了使用nftool训练神经网络的过程,包括设置特征、目标值、训练集比例、隐藏层数量和优化算法。通过分析performance、trainingstate、errorhistogram和regression四个图表,可以评估模型的性能。例如,在epochs=5时,验证集和测试集的均方误差最小。此外,还讨论了训练终止条件和误差直方图的解读,以及如何生成代码和保存训练结果。
2981

被折叠的 条评论
为什么被折叠?



