系列简介:这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释。在内容上,以国内的经典教材”同济版高等数学“为蓝本,并对具体内容作了适当取舍与拓展。例如用ε-δ语言证明函数极限这类高等数学课程不要求掌握的内容,我们不作过多介绍。本系列文章适合作为大一新生初学高等数学时的课堂同步辅导,也可作为高等数学期末复习以及考研第一轮复习时的参考资料。文章中的例题大多为扎实基础的常规性题目和帮助加深理解的概念辨析题,并适当选取了一些考研数学试题。所选题目难度各异,对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“高等数学入门”系列文章,欢迎关注数学若只如初见!

前面几节我们推导了一些常见初等函数的n阶导数公式,并介绍了求乘积函数高阶导数的莱布尼兹公式,有了这些准备之后,本节我们来具体介绍求高阶导数的一些常见方法和典型例题。(由于公式较多,故正文采用图片形式给出。)
一、概述。二、常见n阶导数公式的一些变形。(对于已知函数的n阶导数公式,我们要会根据题目对公式作一些简单变形。)
常见初等函数n阶导数公式的推导见下文:
高等数学入门——常见初等函数的n阶导数公式的推导与总结
三、利用归纳法求n阶导数。(在多数不要求严格性的情况下,解题中可省略用数学归纳法证明的过程。)
四、利用已知的n阶导数公式(常见函数的n阶导数公式要熟记)。
五、求函数在某点处n阶导数的典型例题。
六、例3的解答与评注(在学习泰勒公式后可以更简便地解答本题)。
七、求高阶导数的特殊方法举例。(函数及其导函数之间的关系也是高等数学中的考点之一,类似的结论还有“周期函数的导函数也是周期函数”。)
八、习题。
上一篇:高等数学入门——计算乘积函数高阶导数的莱布尼兹公式