高等数学 · 第三章 导数和微分

第一节 导数的概念

一、引例

例一、切线问题(即几何意义)

tan ⁡ φ = Δ y Δ x = f ( x 0 + Δ x ) − f ( x 0 ) Δ x \tan\varphi = \cfrac {\Delta y} {\Delta x} = \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x} tanφ=ΔxΔy=Δxf(x0+Δx)f(x0)
k = tan ⁡ α = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x k = \tan\alpha = \lim\limits_{\Delta x \to 0} \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x} k=tanα=Δx0limΔxf(x0+Δx)f(x0)

例二、瞬时变化速度问题

变速直线运动的瞬时速度问题。
速 度 = 路 程 时 间 速度 = \cfrac {路程} {时间} =
[ t 0 , t 0 + Δ t ] 的 平 均 速 度 : s ( t 0 + Δ ) − s ( t 0 ) Δ t [t_0, t_0 + \Delta t] 的平均速度:\cfrac {s(t_0 + \Delta) - s(t_0)} {\Delta t} [t0,t0+Δt]Δts(t0+Δ)s(t0)
t 0 时 刻 的 瞬 时 速 度 : v ( t 0 ) = lim ⁡ Δ t → 0 s ( t 0 + Δ t ) − s ( t 0 ) Δ t t_0 时刻的瞬时速度:v(t_0) = \lim \limits_{\Delta t \to 0} \cfrac {s(t_0 + \Delta t) - s(t_0)} {\Delta t} t0v(t0)=Δt0limΔts(t0+Δt)s(t0)

*以上两个例子,大家均在数学和物理中接触过,不作详细介绍。

二、导数的定义

设函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 的某领域内有定义,且自变量 x x x x 0 x_0 x0 处取得增量 Δ x \Delta x Δx 时,函数相对应的增量为: Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0 + \Delta x) - f(x_0) Δy=f(x0+Δx)f(x0). 若当 Δ x → 0 \Delta x \to 0 Δx0 时,极限 lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim\limits_{\Delta x \to 0} \cfrac {\Delta y} {\Delta x} = \lim\limits_{\Delta x \to 0} \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x} Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0) 存在,则称函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处可导,并称此极限为函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处的导数,记为
f ′ ( x 0 ) , y ′ ∣ x = x 0 , d y d x ∣ x = x 0 或 d f ( x ) d x ∣ x = x 0 f'(x_0), y'|_{x = x_0}, \frac {dy} {dx}|_{x = x_0} 或 \frac {df(x)} {dx} |_{x = x_0} f(x0),yx=x0,dxdyx=x0dxdf(x)x=x0
即 f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x 即 f'(x_0) = \lim\limits_{\Delta x \to 0} \cfrac {\Delta y} {\Delta x} = \lim\limits_{\Delta x \to 0} \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)

左右导数表示为:
f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x , f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_-(x_0) = \lim\limits_{\Delta x \to 0^-} \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x}, f'_+(x_0) = \lim\limits_{\Delta x \to 0^+} \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0),f+(x0)=Δx0+limΔxf(x0+Δx)f(x0)

定理3.1 函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可导的充分必要条件是 f ( x ) f(x) f(x) x 0 x_0 x0 处的左、右导数存在且相等。

例题
  1. f ( x ) = x 2 f(x) = x^2 f(x)=x2, 求 f ′ ( 0 ) f'(0) f(0).
    解: f ′ ( 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( 0 + Δ x ) − f ( 0 ) Δ x = lim ⁡ Δ x → 0 ( Δ x ) 2 − 0 2 Δ x = lim ⁡ Δ x → 0 Δ x = 0 f'(0) = \lim\limits_{\Delta x \to 0} \cfrac {\Delta y} {\Delta x} = \lim\limits_{\Delta x \to 0} \cfrac {f(0 + \Delta x) -f(0)} {\Delta x} = \lim\limits_{\Delta x \to 0} \frac{(\Delta x)^2 - 0^2} {\Delta x} = \lim\limits_{\Delta x \to 0} \Delta x = 0 f(0)=Δx0limΔxΔy=Δx0limΔxf(0+Δx)f(0)=Δx0limΔx(Δx)202=Δx0limΔx=0

三、导数的几何意义和物理意义

几何意义: 切线的斜率 k = f ′ ( x 0 ) k = f'(x_0) k=f(x0)
切线方程: y = f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y = f(x_0) = f'(x_0)(x - x_0) y=f(x0)=f(x0)(xx0)
法线方程: y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) , ( f ′ ( x 0 ) ≠ 0 ) y - f(x_0) = - \cfrac 1 {f'(x_0)}(x - x_0), (f'(x_0) \neq 0) yf(x0)=f(x0)1(xx0),(f(x0)=0)
物理意义:瞬时速度

四、可导与连续的关系

定理 3.2 若函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可导,则 f ( x ) f(x) f(x) 必在点 x 0 x_0 x0 处连续。
注意:该定理的逆命题不成立,即若 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处连续,则不能保证 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可导。比如分段函数。

第二节 导数的运算

一、基本初等函数的求导公式

  1. ( C ) ′ = 0 ( C 是 常 数 ) (C)' = 0 (C是常数) (C)=0(C)
  2. ( x n ) ′ = n ∗ x n − 1 (x^n)' = n * x^{n - 1} (xn)=nxn1
  3. ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)' = \cos x (sinx)=cosx
  4. ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)' = -\sin x (cosx)=sinx
  5. ( e x ) ′ = e x , ( a x ) = a x ln ⁡ a ( a > 0 , a ≠ 1 ) (e^x)' = e^x, (a^x) = a^x\ln a (a \gt 0, a \neq 1) (ex)=ex,(ax)=axlna(a>0,a=1)
  6. ( ln ⁡ x ) ′ = 1 x , ( l o g a x ) ′ = 1 x ln ⁡ a ( a > 0 , a ≠ 1 ) (\ln x)' = \cfrac 1 x, (log_a x)' = \cfrac 1 {x \ln a} (a \gt 0, a \neq 1) (lnx)=x1,(logax)=xlna1(a>0,a=1)
  7. ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)' = \sec^2x (tanx)=sec2x
  8. ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)' = - \csc^2 x (cotx)=csc2x
  9. ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)' = \sec x \tan x (secx)=secxtanx
  10. ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)' = - \csc x \cot x (cscx)=cscxcotx
  11. ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)' = \cfrac 1 {\sqrt{1 - x ^2}} (arcsinx)=1x2 1
  12. ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)' = -\cfrac 1 {\sqrt{1 - x ^2}} (arccosx)=1x2 1
  13. ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)' = \cfrac 1 {1 + x ^ 2} (arctanx)=1+x21
  14. ( a r c c o t x ) ′ = − 1 1 + x 2 (arccot x)' = - \cfrac 1 {1 + x ^ 2} (arccotx)=1+x21

二、 导数的四则运算法则

定理3.3 (加、减求导法则)

若函数 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 在点 x x x 处均可导, 则 u ( x ) ± v ( x ) u(x) \pm v(x) u(x)±v(x) 在点 x x x 处可导, 且
( u ( x ) ± v ( x ) ) ′ = u ′ ( x ) ± v ′ ( x ) (u(x) \pm v(x))' = u'(x) \pm v'(x) (u(x)±v(x))=u(x)±v(x)

定理3.4 (乘法求导法则)

若函数 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 在点 x x x 处均可导, 则 u ( x ) v ( x ) u(x)v(x) u(x)v(x) 在点 x x x 处可导, 且
[ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x) [u(x)v(x)]=u(x)v(x)+u(x)v(x)
推论:设 u ( x ) u(x) u(x) 在点 x x x 处可导, C C C 为常数, 则 ( C u ( x ) ) ′ = C u ′ ( x ) (Cu(x))' = Cu'(x) (Cu(x))=Cu(x)

定理 3.5 (商的求导法则)

若函数 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 在点 x x x 处均可导,且 v ′ ( x ) ≠ 0 v'(x) \neq 0 v(x)=0, 则 u ( x ) v ( x ) \cfrac {u(x)}{v(x)} v(x)u(x) 在点 x x x 处可导, 且
( u ( x ) v ( x ) ) ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) (\frac {u(x)} {v(x)})' = \frac {u'(x)v(x) - u(x)v'(x)} {v^2(x)} (v(x)u(x))=v2(x)u(x)v(x)u(x)v(x)

例题
  1. f ( x ) = x 4 + sin ⁡ x − ln ⁡ x f(x) = x^4 + \sin x - \ln x f(x)=x4+sinxlnx 的导函数。
    解: f ′ ( x ) = ( x 4 + sin ⁡ x − ln ⁡ x ) ′ = ( x 4 ) ′ + ( sin ⁡ x ) ′ + ( ln ⁡ x ) = 4 x 3 + cos ⁡ x − 1 x f'(x) = (x^4 + \sin x - \ln x)' = (x^4)' + (\sin x)' + (\ln x) = 4x^3 + \cos x - \cfrac 1 x f(x)=(x4+sinxlnx)=(x4)+(sinx)+(lnx)=4x3+cosxx1

  2. f ( x ) = e x cos ⁡ x f(x) = e^x \cos x f(x)=excosx 的导函数。
    解: f ′ ( x ) = ( e x ) ′ cos ⁡ x + e x ( cos ⁡ x ) ′ = e x cos ⁡ x − sin ⁡ x e x = e x ( cos ⁡ x − sin ⁡ x ) f'(x) = (e^x)' \cos x + e^x (\cos x)' = e^x \cos x - \sin x e^x = e^x (\cos x - \sin x) f(x)=(ex)cosx+ex(cosx)=excosxsinxex=ex(cosxsinx)

  3. f ( x ) = t a n x f(x) = tanx f(x)=tanx 的导函数。
    解: f ′ ( x ) = ( t a n x ) ′ = ( ( sin ⁡ x ) ( cos ⁡ x ) ) ′ = cos ⁡ 2 x + s i n 2 x cos ⁡ 2 x = 1 cos ⁡ 2 x = sec ⁡ 2 x f'(x) = (tanx)' = (\cfrac {(\sin x)} {(\cos x)})' = \cfrac {\cos^2 x + sin^2x}{\cos^2 x} = \cfrac 1 {\cos^2 x} = \sec^2x f(x)=(tanx)=((cosx)(sinx))=cos2xcos2x+sin2x=cos2x1=sec2x

三、反函数的求导法则

定理3.6 (反函数求导法则)

若函数 x = φ ( y ) x = \varphi(y) x=φ(y) 在区间 I y I_y Iy 内单调、可导,且 φ ′ ( y ) ≠ 0 \varphi'(y) \neq 0 φ(y)=0,则其反函数 y = f ( x ) y = f(x) y=f(x) 在对应的区间 I x I_x Ix 内单调、可导,且有 f ′ ( x ) = 1 φ ′ ( y ) f'(x) = \cfrac 1 {\varphi' (y)} f(x)=φ(y)1, 其中, I x = { x ∣ x = φ ( y ) , y ∈ I y } I_x = \{x|x = \varphi(y), y \in I_y \} Ix={xx=φ(y),yIy}.

四、复合函数的求导法则

定理3.7 (复合函数求导法则)

若函数 u = φ ( x ) u = \varphi(x) u=φ(x) 在点 x x x 处可导,而 y = f ( u ) y = f(u) y=f(u) 在相应的点 u = φ ( x ) u = \varphi(x) u=φ(x) 处可导,则复合函数 y = f ( φ ( x ) ) y = f(\varphi (x)) y=f(φ(x)) 在点 x x x 处可导,且有 d y d x = d y d u ⋅ d u d x \cfrac {dy}{dx} = \cfrac {dy}{du} \cdot \cfrac {du} {dx} dxdy=dudydxdu.

例题
  1. y = sin ⁡ ( x 2 ) , y = \sin (x^2), y=sin(x2), d y d x \cfrac {dy} {dx} dxdy.
    解: 令 y = sin ⁡ u , u = x 2 y = \sin u, u = x^2 y=sinu,u=x2,则
    d y d x = d y d u ⋅ d u d x = cos ⁡ u ⋅ 2 x = 2 x cos ⁡ ( x 2 ) \cfrac {dy}{dx} = \cfrac {dy}{du} \cdot \cfrac {du} {dx} = \cos u \cdot 2x = 2x \cos(x^2) dxdy=dudydxdu=cosu2x=2xcos(x2)

第三节 高阶导数

一、高阶导数的定义

定义

设函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 的某邻域内处处可导,若极限 lim ⁡ Δ x → 0 f ′ ( x 0 + Δ x ) − f ′ ( x 0 ) Δ x \lim \limits_{\Delta x \to 0} \cfrac {f'(x_0 + \Delta x) - f'(x_0)}{\Delta x} Δx0limΔxf(x0+Δx)f(x0) 存在,则称其为函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处的二阶导数,记为 f ′ ′ ( x 0 ) , d 2 y d x 2 ∣ x = x 0 或 d 2 f ( x ) d x 2 ∣ x = x 0 f''(x_0), \cfrac {d^2y} {dx^2}|_{x = x_0} 或 \cfrac {d^2f(x)} {dx^2} |_{x = x_0} f(x0),dx2d2yx=x0dx2d2f(x)x=x0,即
f ′ ′ ( x 0 ) = lim ⁡ Δ x → 0 f ′ ( x 0 + Δ x ) − f ′ ( x 0 ) Δ x f''(x_0) = \lim\limits_{\Delta x \to 0} \cfrac {f'(x_0 + \Delta x) - f'(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0)
类似地可以定义三阶导数,四阶导数,…, n n n阶导数,分别记为 y ′ ′ ′ , y ( 4 ) , ⋯   , y ( n ) y''', y^{(4)},\cdots,y^{(n)} y,y(4),,y(n).一般地, y ( n ) = [ y ( n − 1 ) ] ′ y^{(n)} = [y^{(n - 1)}]' y(n)=[y(n1)].

例题
  1. y = ln ⁡ x x y = \cfrac {\ln x} x y=xlnx 的二阶导数。
    解:①、先求一阶导数
    y ′ = ( ln ⁡ x ) x = ( ln ⁡ x ) ′ x − ( ln ⁡ x ) x ′ x 2 = 1 x x − ln ⁡ x 1 x 2 = 1 − ln ⁡ x x 2 y' = \cfrac {(\ln x)} {x} = \cfrac {(\ln x)'x - (\ln x) x'}{x^2} = \cfrac{\frac 1 x x - \ln x 1}{x ^ 2} = \cfrac {1 - \ln x} {x ^ 2} y=x(lnx)=x2(lnx)x(lnx)x=x2x1xlnx1=x21lnx
    ②、求二阶导数
    y ′ ′ = ( 1 − ln ⁡ x x 2 ) ′ = ( 1 − ln ⁡ x ) ′ x 2 − ( 1 − ln ⁡ x ) ( x 2 ) ′ x 4 = − 3 + 2 ln ⁡ x x 3 y'' = (\cfrac {1 - \ln x} {x ^ 2})' = \cfrac {(1 - \ln x)'x^2 - (1 - \ln x)(x ^ 2)'}{ x ^ 4} = \cfrac {-3 + 2\ln x}{x ^ 3} y=(x21lnx)=x4(1lnx)x2(1lnx)(x2)=x33+2lnx

  2. 已知 y = e 2 x y = e ^ {2x} y=e2x,求 y^{(n)}。
    解:归纳法。已知 y ′ = 2 e 2 x , y ′ ′ = 2 2 e ( 2 x ) , y ′ ′ ′ = 2 3 e 2 x , ⋯ y' = 2e^{2x},y'' = 2^2e^{(2x)},y''' = 2^3e^{2x,\cdots} y=2e2x,y=22e(2x),y=23e2x,,
    归纳可得答案 y ( n ) = 2 n e ( 2 x ) y^{(n)} = 2 ^ n e ^ {(2x)} y(n)=2ne(2x).

第四节 微分及其运算

一、微分的定义

设函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 的某邻域内有定义。若函数的增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0 + \Delta x) - f(x_0) Δy=f(x0+Δx)f(x0) 可以表示成 Δ y = A Δ x + o ( Δ x ) \Delta y = A\Delta x + o(\Delta x) Δy=AΔx+o(Δx),其中 A A A 是与 Δ x \Delta x Δx 无关的常数, o ( Δ x ) o(\Delta x) o(Δx) 是比 Δ x \Delta x Δx 高阶的无穷小量(当 Δ x → 0 \Delta x \to 0 Δx0时),则称函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处是可微的,称 A Δ x A\Delta x AΔx 为函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处的微分,记为: d y ∣ x = x 0 = A Δ x dy|_{x = x_0} = A \Delta x dyx=x0=AΔx.

二、函数的导数与微分的关系

① 若 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处可微,则 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) = A Δ x + o ( Δ x ) \Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x) Δy=f(x0+Δx)f(x0)=AΔx+o(Δx)
在等式两边同时除以 Δ x \Delta x Δx,则有 Δ y Δ x = f ( x 0 + Δ x ) − f ( x 0 ) Δ x = A + o ( Δ x ) Δ x \cfrac {\Delta y}{\Delta x} = \cfrac {f(x_0 + \Delta x) - f(x_0)}{ \Delta x} = A + \cfrac {o(\Delta x)}{\Delta x} ΔxΔy=Δxf(x0+Δx)f(x0)=A+Δxo(Δx),
lim ⁡ Δ x → 0 o ( Δ x ) Δ x = 0 \lim \limits_{\Delta x \to 0} \cfrac {o(\Delta x)}{\Delta x} = 0 Δx0limΔxo(Δx)=0,所以 lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = A \lim \limits_{\Delta x \to 0} \cfrac {\Delta y}{\Delta x} = \lim \limits_{\Delta x \to 0} \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)=A,
y = f ( x ) y = f(x) y=f(x) x 0 x_0 x0 出可导,且 f ′ ( x 0 ) = A f'(x_0) = A f(x0)=A
② 另外,若 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处可导,则 lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = f ′ ( x 0 ) \lim \limits_{\Delta x \to 0} \cfrac {\Delta y}{\Delta x} = \lim \limits_{\Delta x \to 0} \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0) Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)=f(x0)
由极限和无穷小的关系得到 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = f ′ ( x 0 ) + α , lim ⁡ Δ x → 0 α = 0 \cfrac {f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0) + \alpha, \lim \limits_{\Delta x \to 0} \alpha = 0 Δxf(x0+Δx)f(x0)=f(x0)+α,Δx0limα=0
所以 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) = f ′ ( x 0 ) Δ x + α Δ x \Delta y = f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + \alpha \Delta x Δy=f(x0+Δx)f(x0)=f(x0)Δx+αΔx,且 lim ⁡ Δ x → 0 α = 0 \lim\limits_{\Delta x \to 0} \alpha = 0 Δx0limα=0
y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处可微,且 d y ∣ x = x 0 = f ′ ( x ) Δ x dy|_{x = x_0} = f'(x) \Delta x dyx=x0=f(x)Δx.

定理 3.9 (可微与可导的关系)

函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处可微的充分必要条件是 函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可导,且 d y ∣ x = x 0 = f ′ ( x 0 ) Δ x dy|_{x = x_0} = f'(x_0) \Delta x dyx=x0=f(x0)Δx

定理 3.10 (可微与连续的关系)

函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处可微,则函数 f ( x ) f(x) f(x) 必在 x 0 x_0 x0 处连续。

例题
  1. y = x 4 + 5 x 3 + x − 1 y = x^4 + 5 x ^ 3 + x - 1 y=x4+5x3+x1,求 d y dy dy.
    解: y ′ = 4 x 3 + 15 x 2 + 1 y' = 4 x ^ 3 + 15 x ^ 2 + 1 y=4x3+15x2+1
    d y = y ′ Δ x = ( 4 x 3 + 15 x 2 + 1 ) Δ x = ( 4 x 3 + 15 x 2 + 1 ) d x dy = y' \Delta x = (4 x ^ 3 + 15 x ^ 2 + 1)\Delta x = (4 x ^ 3 + 15 x ^ 2 + 1)dx dy=yΔx=(4x3+15x2+1)Δx=(4x3+15x2+1)dx

三、微分的几何意义

Δ y \Delta y Δy 是曲线 y = f ( x ) y = f(x) y=f(x) 在横坐标为 x 0 x_0 x0 x 0 + Δ x x_0 + \Delta x x0+Δx 两点处的纵坐标之差;
d y dy dy 是曲线 y = f ( x ) y = f(x) y=f(x) ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处的切线 y = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) y = f(x_0) + f'(x_0)(x - x_0) y=f(x0)+f(x0)(xx0) 在横坐标为 x 0 x_0 x0 x 0 + Δ x x_0 + \Delta x x0+Δx 两点处的纵坐标之差。

四、基本微分公式与微分运算法则

基本公式
  1. d ( C ) = 0 ( C 是 常 数 ) d(C) = 0 (C是常数) d(C)=0(C)
  2. d ( x n ) = n ∗ x n − 1 d x ( n 为 实 数 ) d(x^n) = n * x^{n - 1}dx(n为实数) d(xn)=nxn1dxn
  3. d ( sin ⁡ x ) = cos ⁡ x d x d(\sin x) = \cos x dx d(sinx)=cosxdx
  4. d ( cos ⁡ x ) = − sin ⁡ x d x d(\cos x) = -\sin x dx d(cosx)=sinxdx
  5. d ( e x ) = e x d x d(e^x) = e^xdx d(ex)=exdx
  6. d ( a x ) = a x ln ⁡ a d x ( a > 0 , a ≠ 1 ) d(a^x) = a^x\ln a dx (a \gt 0, a \neq 1) d(ax)=axlnadx(a>0,a=1)
  7. d ( ln ⁡ x ) = 1 x d x d(\ln x) = \cfrac 1 x dx d(lnx)=x1dx
  8. d ( l o g a x ) = 1 x ln ⁡ a d x ( a > 0 , a ≠ 1 ) d(log_a x) = \cfrac 1 {x \ln a} dx(a \gt 0, a \neq 1) d(logax)=xlna1dx(a>0,a=1)
  9. d ( tan ⁡ x ) = sec ⁡ 2 x d x d(\tan x) = \sec^2x dx d(tanx)=sec2xdx
  10. d ( cot ⁡ x ) = − csc ⁡ 2 x d x d(\cot x) = - \csc^2 x dx d(cotx)=csc2xdx
  11. d ( sec ⁡ x ) = sec ⁡ x tan ⁡ x d x d(\sec x) = \sec x \tan x dx d(secx)=secxtanxdx
  12. d ( csc ⁡ x ) = − csc ⁡ x cot ⁡ x d x d(\csc x) = - \csc x \cot x dx d(cscx)=cscxcotxdx
  13. d ( arcsin ⁡ x ) = 1 d x 1 − x 2 d x d(\arcsin x) = \cfrac 1 dx{\sqrt{1 - x ^2}} dx d(arcsinx)=d1x1x2 dx
  14. d ( arccos ⁡ x ) = − 1 d x 1 − x 2 d x d(\arccos x) = -\cfrac 1 dx {\sqrt{1 - x ^2}} dx d(arccosx)=d1x1x2 dx
  15. d ( arctan ⁡ x ) = 1 1 + x 2 d x d(\arctan x) = \cfrac 1 {1 + x ^ 2} dx d(arctanx)=1+x21dx
  16. d ( a r c c o t x ) = − 1 1 + x 2 d x d(arccot x) = - \cfrac 1 {1 + x ^ 2} dx d(arccotx)=1+x21dx
定理 3.11 (微分运算法则)

u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 在点 x x x 处可微,则 u ( x ) ± v ( x ) , u ( x ) v ( x ) , u ( x ) v ( x ) ( v ( x ) ≠ 0 ) u(x) \pm v(x), u(x)v(x), \cfrac {u(x)}{v(x)}(v(x) \neq 0) u(x)±v(x),u(x)v(x),v(x)u(x)(v(x)=0) 也在点 x x x 处可微,且
d ( u ( x ) ± v ( x ) ) = d u ( x ) ± d v ( x ) , d(u(x)\pm v(x)) = du(x) \pm dv(x), d(u(x)±v(x))=du(x)±dv(x),
d ( u ( x ) v ( x ) ) = v ( x ) d u ( x ) + u ( x ) d v ( x ) , d(u(x)v(x)) = v(x)du(x) + u(x)dv(x), d(u(x)v(x))=v(x)du(x)+u(x)dv(x),
d ( u ( x ) v ( x ) ) = v ( x ) d u ( x ) − u ( x ) d v ( x ) v 2 ( x ) . d(\cfrac {u(x)}{v(x)}) = \cfrac {v(x)du(x) - u(x)dv(x)}{v^2(x)}. d(v(x)u(x))=v2(x)v(x)du(x)u(x)dv(x).

定理 3.12 (微分形式的不变性)

u = φ ( x ) u = \varphi (x) u=φ(x) 在点 x x x 处可微, y = f ( u ) y = f(u) y=f(u) 在相应的点 u = φ ( x ) u = \varphi(x) u=φ(x) 处可微, 则复合函数 y = f ( φ ( x ) ) y = f(\varphi (x)) y=f(φ(x)) 在点 x x x 可微,且 d y = f ′ ( u ) d u dy = f'(u)du dy=f(u)du. 其中 u = φ ( x ) , d u = φ ′ ( x ) d x u =\varphi(x), du = \varphi'(x)dx u=φ(x),du=φ(x)dx

五、微分的应用

由于当 f ′ ( x 0 ) ≠ 0 f'(x_0) \neq 0 f(x0)=0 时,函数 y = f ( x ) y = f(x) y=f(x) 的微分 d y dy dy 是增量 Δ y \Delta y Δy 的线性主部,且相差的是比 Δ x \Delta x Δx 高阶的无穷小 o ( Δ x ) o(\Delta x) o(Δx),所以当 ∣ Δ x ∣ |\Delta x| Δx 较小的时候有:
① 式 : Δ y = f ( x 0 + Δ x ) − f ( x 0 ) ≈ d y ①式: \Delta y = f(x_0 + \Delta x) - f(x_0) \approx dy :Δy=f(x0+Δx)f(x0)dy
或 ② 式 : f ( x 0 + Δ x ) ≈ f ( x 0 ) + f ′ ( x 0 ) Δ x 或②式: f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x :f(x0+Δx)f(x0)+f(x0)Δx
利用公式①可以估算函数 y = f ( x ) y = f(x) y=f(x) 的增量 Δ y \Delta y Δy;利用公式②, 可以通过 f ( x 0 ) f(x_0) f(x0) f ′ ( x 0 ) f'(x_0) f(x0) 来计算函数值。

例题
  1. 计算 1.02 \sqrt {1.02} 1.02 的近似值。
    解:设 y = f ( x ) = x y = f(x) = \sqrt x y=f(x)=x , 由于 1.02 = 1 + 0.02 1.02 = 1 + 0.02 1.02=1+0.02,所以取 x 0 = 1 , Δ x = 0.02 x_0 = 1, \Delta x = 0.02 x0=1,Δx=0.02,有 1.02 = f ( 1 + 0.02 ) ≈ f ( 1 ) + f ′ ( 1 ) × 0.02 \sqrt {1.02} = f(1 + 0.02) \approx f(1) + f'(1) \times 0.02 1.02 =f(1+0.02)f(1)+f(1)×0.02
    f ′ ( x ) = 1 2 x . f ′ ( 1 ) = 1 2 , f ( 1 ) = 1 f'(x) = \cfrac {1} {2 \sqrt {x}}. f'(1) = \cfrac 1 2,f(1) = 1 f(x)=2x 1.f(1)=21,f(1)=1
    所以 1.02 = f ( 1 + 0.02 ) ≈ 1 + 1 2 × 0.02 − 1.01 \sqrt {1.02} = f(1 + 0.02) \approx 1 + \cfrac 1 2 \times 0.02 - 1.01 1.02 =f(1+0.02)1+21×0.021.01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值