matlab复化梯形公式求积分_7.3 复化求积法

本文探讨了在MATLAB中使用复化梯形公式进行积分求解的问题。通过复化求积法,将积分区间适当分段并采用低阶Newton-Cotes公式,以提高精度。复化Simpson公式的误差分析表明,加密节点能提升精度,但选择合适的步长至关重要。为平衡精度和计算量,通常采用区间逐次二分法。文中还提到了龙贝格算法作为自动调整等分数的手段,以实现更高效的积分计算。

由误差余项公式可知区间过大,误差亦大;为避免可选取适当多的节点,即选取相对高阶的Newton-cotes公式,但由稳定性分析又知:当阶数过大时,会出现不稳定的Runge现象。

复化求积法:将积分区间进行适当分段,在各分段子区间上采用低阶的Newton-Cotes求积公式,对各个小区间上的积分值进行一个近似,最后再累加起来。

例如:复化Simpson公式的推导:

ec6307b2f679dbedd971a8ce4ff0297a.png

复化Simpson公式误差分析:

6e31f35442c42f140533e1262cd73f84.png

87ae764d7e9b0776f8c6987c86bd25db.png

260b01aa4b765ebefa5c70fd031e2465.png

其中有个加一项减一项

区间逐次二分法

由复化求积公式的截断误差可知,加密节点可以提高求积公式的精度,但困难在于:使用公式之前需给出合适的步长,h过大,满足不了精度;h过小,计算量过大,因而实用的方法是采用区间逐次二分法,反复利用求积公式计算,直至二分前后两次积分值的差满足精度为止。

比如:对区间进行n等分,每个区间上先采用梯形公式,即复化梯形公式,若不能满足精度,则将每个小区间二等分,再分别采用梯形公式,不过端点处的值不用再算了,新算的只有新小区间上的二等分点处值,这样便可使计算量节约一半。

龙贝格算法(自动调整等分数)

ed0b29eddcb7bcb7fc9de9cef07e9568.png

efe0ec50e0fbfaac5448264ab77a9926.png

8842478db0792d6bfe16c8ed3cbc7cbf.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值