从0到1:手把手带你吃透CNN在计算机视觉中的应用

引言

在计算机视觉这片充满无限可能的领域中,卷积神经网络(Convolutional Neural Network,简称 CNN)宛如一颗璀璨的明星,散发着独特的光芒。CNN,作为深度学习家族中的重要成员,是一种专门为处理具有网格结构数据(如图像、音频)而设计的强大模型 。它通过巧妙的卷积操作,能够自动提取数据中的关键特征,仿佛拥有一双敏锐的 “眼睛”,精准地洞察图像中的奥秘。

从最初的 LeNet-5 用于手写数字识别,到 AlexNet 在 ImageNet 竞赛中以远超传统方法的准确率夺冠,CNN 的发展历程充满了创新与突破。它不断推动着计算机视觉技术的边界,在图像分类、目标检测、语义分割等诸多关键任务中取得了令人瞩目的成就,已然成为计算机视觉领域的中流砥柱。接下来,就让我们一同深入探索 CNN 的内部结构,揭开其强大能力背后的神秘面纱。

CNN 核心概念剖析

(一)卷积层:图像特征提取的引擎

卷积层是 CNN 的核心组成部分,其主要职责是从输入图像中提取丰富的特征 。它通过卷积核(也称为滤波器)在输入数据上进行滑动,执行卷积操作,从而获取图像的局部特征。卷积核是一个可学习的小尺寸矩阵,例如常见的 3×3 或 5×5 大小 。

假设我们有一个 5×5 的输入图像矩阵,以及一个 3×3 的卷积核。卷积操作的过程如下:卷积核从输入图像的左上角开始

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值