卡尔曼滤波以后再经过低通滤波器_Kalman滤波器学习

概率图+时间=动态系统

​ 对概率图模型考虑其时间序列,可以得到动态系统。根据动态系统的隐状态的连续性和分布可以把系统大致分为三类:

若隐状态离散,不要求分布,则为隐马尔可夫模型

如果隐状态连续、线性且服从高斯分布,则为Kalman滤波器(线性高斯模型)

如果隐状态连续且非线性,作为得到粒子滤波器

本节主要来介绍kalman滤波器。

Kalman滤波器

简述

卡尔曼滤波器是由Swerling(1958)和Kalman(1960)作为线性高斯系统中的预测和滤波技术而发明的,使用矩来定义的。KF实现了对连续状态的置信度计算。KF用矩参数来表示置信度:在时刻k,置信度用均值$ \mu_k $(一阶矩)和方差$ \sum _{k-1} $(二阶矩)表达。

卡尔曼滤波建立在线性代数和隐马尔可夫模型上。其基本动态系统可以用一个马尔可夫链来表示,该马尔可夫链建立在一个线性高斯系统上。系统的状态可以用一个元素为实数的向量表示。随着离散时间的每一个增加,这个线性算子就会作用在当前状态上,产生一个新的状态,并也会带入一些噪声,同时系统的一些已知的控制器的控制信息也会被加入。同时,另一个受噪声干扰的线性算子产生出这些隐含状态的可见输出。

使后验为高斯分布的前提,同时也是KF的特性:

(1)状态转移必须是带有随机高斯噪声的参数的线性函数。

(2)测量也与带有高斯噪声的自变量呈线性关系。

(3)初始置信度必须是正态分布的。

这三个假设足以确保后验在任何时刻t总符合高斯分布。

根据线性高斯系统可以得到卡尔曼滤波器。

卡尔曼滤波器的状态由以下两个变量表示:

$\hat{x}_k$,在时刻k的状态的估计;

$\Sigma_{k}$,后验估计误差协方差矩阵,度量估计值的精确程度。

线性高斯系统

线性高斯系统是说,运动方程和观测方程可以由线性方程来描述:

$$

\begin{cases}x_k=A_kx_{k-1}+u_k+w_k \quad k=1,…,N\

z_k=C_kx_k+v_k

\end{cases}

$$

C:%5CUsers%5C%E9%83%AD%E7%8A%87%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20200330234714941.png

系统模型

$$

x_k=A_kx_{k-1}+u_k+w_k \quad k=1,…,N

$$

其中,$A_k$是作用在$x_{k-1}$的状态变换模型(矩阵/矢量)。

$w_k$是过程

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值