抢红包概率是随机的吗_【高中数学选修23研读】“第二章:随机变量及其分布”...

第二章:随机变量及其分布

【导入】

在自然现象、生产和生活实际中,很多随机变量都服从或近似地服从正态分布。

射击选手的每次射击成绩具有随机性。他的射击特点该如何刻画?他的射击水平该如何评价?

【概述】

我们知道,概率是描述随机事件发生可能性大小的度量,而且我们也知道了某些简单的概率模型。例如,在掷一枚质地均匀的硬币的古典概率模型中,关心事件“正面向上”的概率;在掷一枚质地均匀的骰子的古典概率模型中,关心事件“出现1点”的概率;在描述新生儿性别的概率模型中,关心事件“新生儿是女孩”的概率......这些不同概率模型中所提及的事件有什么共同特点?是不是可以建立一个统一的概率模型来刻画这些随机事件?这就需要学习一些关于随机变量及其分布的知识。

把随机试验的结果数量化,用随机变量表示随机试验的结果,就可以利用数学工具来研究所感兴趣的随机现象。在本章中,我们将在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差等知识,利用离散型随机变量思想描述和分析某些随机现象,解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思想思考和解决问题的特点。

【开篇的理解】

1)开篇就给出一个专有名词——正态分布,接着询问关于射击运动员的射击水平问题,似乎这二者之间是有什么关系的,但是何关系呢?这一问激发学生的求知欲;

2)简单回顾必修3中学习过的概率及其模型,引导学生思考如果建立统一的概率模型。进而引出本章的学习内容;

3)给出概率统一模型的思路——将随机结果数量化,借助函数来研究;

4)交代本章学习安排。

2.1离散型随机变量及其分布列

2.1.1离散型随机变量

1)设置“思考(抛掷骰子结果是数字,那抛掷硬币的结果是否也可用数字表示?)”导入课题;

2)引导学生分析该问题,并给出一种表示:正对1,反对0;设置“疑问”引导学生给出其他表示;

3)结合思考中的问题,给出随机变量的概念及其记号;

4)设置“思考”引导学生思考随机变量与函数之间的相似之处;

5)学生发现两者都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数。在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域;

6)结合“实例(产品中抽样抽出次品的数量)”指出:利用随机变量可以表示一些事件;

7)给出离散型随机变量的概念;举出大量例子:射击的命中环数、网页在一定时间内被点击的次数;

8)设置“思考”引导学生思考灯泡的寿命是离散型随机变量吗?

9)学生发现:灯泡的寿命的连续的,故不是;

10)指出随机变量是根据所关心的问题而定义的,并举例将灯泡寿命这个非离散型随机变量改造成离散型随机变量;

11)课后习题。

2.1.2离散型随机变量的分布列

1)创设“问题情境(计算抛掷骰子出现各点的概率表)”导入课题

2)引导学生利用概率的可加性分析该表,发现可由它获得与抛掷骰子有关事件的概率;

3)结合以上分析,给出概率分布列的含义及其表示:列表、等式、图象;设置“栏目”引导学生“对比”函数的三种表示来加深对离散型随机变量与函数之间关系的理解;

4)引导学生根据概率的性质,发现离散型随机变量的分布列所具有的性质

4.1)pi≥0, i=1, 2, ..., n;

4.2)p1+ p2+... pn=1;

5)编排例题帮助学生理解离散型随机变量的分布列

5.1)例题1给出两点(0-1)分布的概念;

5.2)例题2帮助学生熟悉离散型随机变量在次品抽样中的应用;

5.3)推广例题2给出超几何分布的概念;

6)编排例题进一步帮助学生理解超几何分别;设置“思考”引导学生进一步深挖该例题:通过中奖概率反过来设计规则,培养学生逆向思维;

7)课后习题。

本两节理解:建立从随机试验结果到随机变量的映射的目的是将实际问题数量化,便于用数学工具更好地研究问题,进一步体会数学建模的思想。引入随机变量的目的是研究随机现象发生的统计规律,及所有随机事件发生的概率。

离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象。对随机变量的概率分布的研究,实现了随机现象数学化的转化。离散型随机变量的分布列是概率与统计的桥梁与纽带,既是概率的延伸,也是学习统计学的理论基础,起到承上启下的作用,也是后续离散型随机变量的均值和方差的基础。

【章节练习2.1】

2.2二项分布及其应用

2.2.1条件概率

1)设置“探究”导入课题

1.1)引导学生探究:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率;

1.2)学生探究发现:最后一名同学中奖概率为1/3;

2)设置“思考”继续思考

2.1)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率;

2.2)学生思考发现:最后一名同学中奖概率为1/2;

3)引导学生将以上各事件用符号表示(P(A)、P(B)、P(B|A)),并思考为什么知道第一名同学的抽奖结果会影响最后一名同学的中奖概率,即P(B)≠P(B|A);

4)设置“思考”引导学生思考P(B|A)与P(A)、P(B)的关系;

5)引导学生结合该实例,发现:P(B|A)= P(AB)/ P(A);

6)结合学生的发现,给出条件概率的概念;

7)给出条件概率的性质

7.1)0≤P(B|A)≤1;

7.2)对互斥事件B、C,有P(BUC|A)= P(B|A)+P(C|A);

8)编排例题帮助学生熟悉条件概论的概念及其计算;设置“栏目”指出:利用事件中基本元素的个数是求解条件概率的重要方法;

9)课后习题。

本节理解:条件概率的概念在概率理论中占有十分重要的地位,从其字面上理解就是有条件的概率,是在附加一定的条件下所计算的概率,从广义上讲,任何概率都是条件概率,因为我们是在一定的实验下而考虑事件的概率的,而实验即规定有条件,在概率论中,规定试验的那些基础条件被看作是已定不变的,如果不再加入其他条件或假设,则计算出的概率就叫做“无条件概率”,就是通常所说的概率,当说到“条件概率”时,总是指另外附加的条件,其形式可归结为“已知某事件发生了”。条件概率的核心是由于条件的附加使得样本空间范围缩小,从而所求事件概率发生变化。

条件概率具有承上启下的作用,既可以通过它来巩固古典概型,又通过条件概率来引入事件的相互独立性,从而为导出二项分布埋下伏笔。

2.2.2事件的相互独立性

1)设置“思考”导入课题

1.1)引导学生思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A为“第一名同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”,事件A的发生会影响事件B发生的概率吗?

1.2)学生发现:两种没有关系;

2)结合学生的发现,给出事件相互独立的概念:P(AB)= P(A)P(B);

3)编排例题帮助学生理解事件的相互独立性及其计算;设置“思考”引导学生进一步深挖该例题;

4)课后习题。

本节理解:独立性也是概率论中极其重要的概念,它的主要作用是简化概率计算。本节中引入独立性的概念主要是为了介绍二项分布的产生背景。两个事件相互独立与两个事件互斥学生容易混淆,在教学中要让学生对两个概念进行比较。

2.2.3独立重复试验与二项分布

1)开门见山直接导入课题;

2)结合事件独立性的概念和“实例(n次重复抛掷硬币)”给出n次独立重复试验的含义;

3)设置“探究”引导学生思考:投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p。连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?

4)引导学生分析该探究问题,利用概率加法公式求得答案;

5)设置“思考”进一步思考出现k(0, 1, 2, 3)次针尖向上的概率,并发现结果的规律;

6)学生“类比”计算出结果,并发现结果具有形式:C3kpkq3-k,k=0, 1, 2, 3;

7)结合学生的发现,给出二项分布的概念和记号;设置“疑问”引导学生思考该公式与二项式定理的联系;

8)设置“思考”引导学生思考二项分布与两点分布的关系;

9)编排例题帮助学生熟悉二项分布的计算;

10)课后习题。

本节理解:二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似的看成二项分布。在自然现象和社会现象中,大量的随机变量都服从或近似的的服从二项分布,实际应用广泛,理论上也非常重要。可以说本节内容是对前面所学知识的综合应用,是一种模型的构建。是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。会对今后数学及相关学科的学习产生深远的影响。

【探究与发现】

本文是从函数的角度探究二项分布中最大概率值何时取得;文后设置“思考”将该问题推广到一般情况,让学生类比思考。

【章节练习2.2】

2.3离散型随机变量的均值与方差

【导入】

“人们除了关系离散型随机变量的概率外,更关系其数字特征,如均值和方差”导入本章节。

2.3.1离散型随机变量的均值

1)设置“思考”导入课题

1.1)某商场要将单价分别为18元/kg,24元/kg,36元/kg的3种糖果按3:2:1的比例混合销售,如何对混合糖果定价才合理?

1.2)引导学生通过加权平均的方式给出答案;

1.3)设置“思考”引导学生思考:如果18,24,36都变为某一值k,问这时“权”的含义;

2)引导学生从概率角度再次解释思考问题中的权数,并给出其分布列;

3)结合学生的思考,给出随机变量的均值(数学期望)的概念;指出期望反映了随机变量的平均水平;

4)期望的计算

4.1)随机变量的线性组合的期望,为其期望的线性组合:E(aX+b)=aE(X)+b;编排例题帮助学生熟悉这一计算公式;

4.2)两点分布的期望=p;设置“疑问”引导学生利用该公式计算罚球的得分问题;

4.3)二项分布的期望=np;

5)设置“思考”引导学生思考随机变量的均值与样本的平均值的关系;

6)学生发现:随机变量的均值是常数,而样本的平均值是随着样本的不同而变化的,此样本的平均值是随机变量;

7)编排例题帮助学生熟悉这些期望公式

7.1)例题2帮助学生熟悉二项分布的期望公式以及期望的线性性质;设置“思考”引导学生理解均值与单次成绩之间是否有确定关系;

7.2)例题3帮助学生体会均值在实际问题中的应用;

8)课后习题。

2.3.2离散型随机变量的方差

1)设置“探究”导入课题

1.1)已知两位同学的射击分布列,选出参赛人员;

1.2)引导学生计算期望,发现期望一样无法区分两人水平;

1.3)设置“思考”引导学生思考刻画两人设计特点的指标;

1.4)引导学生用图形表示分布列,发现第二名同学成绩更集中,即更稳定;

2)设置“思考”引导学生思考如何刻画随机变量的稳定性;

3)引导学生“类比”样本,提出是否可用类似于样本的方差的量来刻画;

4)结合学生的思考,给出方差和标准差的概念以及对应计算式;指出:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小;

5)设置“思考”引导学生思考随机变量的方差与样本的方差的关系;

6)学生发现:随机变量的方差是常数,而样本的方差是随着样本的不同而变化的,因此样本的方差是随机变量;

7)引导学生利用随机变量方差的概念解决探究中的问题;

8)设置“思考”引导学生思考“探究问题”的延伸问题,以发散学生的思维;

9)方差的计算

9.1)两点分布的方差=pq;

9.2)二项分布的期望=npq;

9.3)设置“探究”引导学生证明D(aX+b)=a2D(X);

10)编排例题帮助学生熟悉这些方差公式;

11)课后习题。

本两节理解:离散型随机变量的均值是刻画离散型随机变量取值的平均水平的一个数字特征,是从一个侧面刻画随机变量取值的特点。在实际问题中,离散型随机变量的均值具有广泛的应用性。随机变量的方差是刻画取值的稳定与波动、集中与离散的程度的一个数字特征。

学习中需要注意随机变量的这两个数字特征与样本的对应两个数字特征的区别与联系。

【章节练习2.3】

2.4正态分布

1)创设“问题情境”导入课题

1.1)简单介绍高尔顿板装置;

1.2)进行试验;

1.3)根据落入各个球槽的小球数目作出其频率直方图;

1.3)随着试验次数的增加,该频率直方图呈现为一个钟形曲线;

2)根据试验结果,给出正态分布(密度)曲线的表达式;

3)根据高尔顿板建立坐标系,得到小球下落与高尔顿底部第一次接触时的坐标是一随机变量,且其位于(a, b]的概率为正态曲线在该区间的定积分;

4)根据以上发现,给出正态分布的定义:X~N(μ, σ2),其中μ反映期望,σ反映标准差;

5)指出实际经验:经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布;正态分布广泛存在于自然现象、生产和生活实际之中;

6)举例:高尔顿板、长度测量的误差、某地每年七月份的平均气温、平均湿度、降雨量等等;

7)设置“思考”引导学生结合正态曲线的解析式和概率的性质,分析正态曲线的性质;

8)学生发现:1) 曲线位于x轴上方,与x轴不相交;2)曲线是单峰的,它关于直线x=μ对称;3)曲线在x=μ处达到峰值;4)曲线与x轴之间的面积为1;

9)通过【信息技术应用】发现:5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中: σ越大,曲线越“矮胖”,表示总体的分布越分散;

10)3σ原则

10.1)利用正态分布在区间(μ-a, μ+a]的概率,有:P(μ-σ< X≤μ+σ)≈0.6826, P(μ-2σ< X≤μ+2σ)≈0.954 4, P(μ-3σ< X≤μ+3σ)≈0.9974;

10.2)由此可知正态总体几乎总取值于区间(μ-3σ, μ+3σ)之内,之外的概率只有0.0026非常之小;由此可得到3σ原则;

10.3)实际应用中就经常应用3σ原则;必修3第二章2.2节后的【阅读与思考】也有关于该原则的介绍;

11)课后习题。

本节理解:正态分布是概率论与统计学的重要内容。一方面,它是在学生学习了总体分布后给出的一种自然界最常见的一种分布,它是学生进一步应用正态分布解决实际问题的理论依据,因此它起着承上启下的桥梁作用,另一方面,正态分布具有许多良好的性质,许多分布都可以用正态分布来近似描述。因此在理论研究中,正态分布占有很重要的地位。

在学习了离散型随机变量之后,正态分布作为连续型随机变量,在这里既是对前面内容的一种补充,也是对前面知识的一种拓展,是必修3第三章概率知识的后续。

【信息技术应用】

本文是关于利用几何画板探究正态曲线如何随参数μ和σ变化的过程。

【章节练习2.4】

小结

1.知识结构

f49e2bc04ffc4b58cd62034012c7eaa2.png

2.回顾与思考

1)把随机现象的结果数量化,即用随机变量表示随机现象的结果,使我们可以利用数学工具(如函数、积分等)来研究它们,研究一个随机现象,就是要了解它所有可能出现的结果以及每一个结果出现的概率,对于离散型随机变量所刻画的随机现象,分布列完全描述了该随机现象的统计规律,你能举出一些离散型随机变量的实例,并列出其分布列吗?

2)超几何分布、二项分布是两个非常重要的、应用广泛的概率模型,现实生活、生产实际中的许多问题都可以利用这两个概率模型来解决。

(1)你能通过实例说明超几何分布及其导出过程吗?

(2)你能利用二项分布这一概率模型,说明下面想法并不正确吗?

“随机掷一枚质地均匀的硬币,出现正面的概率是0.5。因此,随机抛掷100次硬币,出现50次正面的可能性应该也是0.5”。

3)离散型随机变量的均值代表了随机变量取值的平均水平,它与样本的平均值有类似之处;离散型随机变量的方差刻画了随机变量稳定于(或集中于)均值的程度,它与样本的方差有类似之处。你能仿照课本中的例题,举例说明离散型随机变量的均值和方差在现实生活中的作用吗?

4)实际生产、生活中,许多随机现象都服从或近似地服从正态分布,所以正态分布的应用非常广泛。

(1)你能根据正态曲线的特点画出一条正态曲线的草图吗?

(2)到体育老师处搜集关于你所在年级同学身高的数据资料,仿照课本中的方法,研究一下你们年级同学的身高分布是否近似服从正态分布?如果是,请估计参数μ的值。

【总复习题】

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值